Skip to main content

Constitutive Equations and Instabilities of Granular Materials

  • Chapter
Modeling and Mechanics of Granular and Porous Materials

Abstract

Constitutive equations for geomaterials constitute a very intricate field. In the first part of this chapter, a synthetic view of constitutive formalism is presented. An intrinsic classification of all existing constitutive relations is deduced. Then examples of incrementally non-linear relations are given and some applications follow. A numerical study of the so-called “yield surfaces” is presented, and is followed by a discussion on the validity of the principle of superposition for incremental loading. Finally the question of bifurcations and instabilities in geomaterials is investigated. Essentially because of the non-associative character of geomaterial plastic strains, a large domain of failure with various modes of ruptures is exhibited.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Aubry, J.C. Hujeux, F. Lassoudire, Y. MEIMON: A double memory model with multiple mechanisms for cyclic soil behaviour, in: R. Dungar, G.N. Pande, J. Studer (eds.):Proc. Int. Symp. Numer. Models Geomech. 1Balkema, Rotterdam, 1982, pp. 3–13.

    Google Scholar 

  2. Z.P. bazant: Endochronic inelasticity and incremental plasticityInt. J. Solids Struct. 14pp. 691–714, 1978.

    Article  MATH  Google Scholar 

  3. R. Chambon, J. Desrues, W. Hammad, R. Charlier: CLoE, a new rate-type constitutive model for geomaterials. Theoretical basis and implementationInt. J. Num. Anal. Meth. Geomech. 18pp. 253–278, 1994.

    Article  MATH  Google Scholar 

  4. Y.F. Dafalias: Bounding surface plasticity. I: mathematical foundation and hypoelasticityJ. Eng. Mech. 112(9)pp. 966–987, 1986.

    Article  Google Scholar 

  5. Y.F. Dafalias, L.R. Hermann: A bounding surface soil plasticity model, in: G.N. Pande, O.C. Zienkiewicz (eds.):Proc. Symp. SoilsunderCyclic and Transient LoadingBalkema, Rotterdam, 1980, pp. 335–345.

    Google Scholar 

  6. F. Darve: Une loi rhéologique incrémentale non-linéaire pour les solidesMech. Res. Comm. 7(4)pp. 295–212, 1980.

    Article  Google Scholar 

  7. F. Darve: An incrementally non-linear constitutive law of second-order and its application to strain localization, in: C.S. DESAI, R.H. Gallagher (eds.):Mechanics of Engineering MaterialsJohn Wiley and Sons, London, 1984, pp. 179–196.

    Google Scholar 

  8. F. Darve: Incrementally non-linear constitutive relationships, in: F. Darve (ed.):Geomaterials Constitutive Equations and ModellingElsevier Applied Science, Amsterdam, 1990, pp. 213–238.

    Google Scholar 

  9. F. Darve: Liquefaction phenomenon of granular materials and constitutive instabilityInt. J. Eng. Comp. 7pp. 5–28, 1996.

    Google Scholar 

  10. F. Darve, B. Chau: Constitutive instabilities in incrementally nonlinear modelling, in: C.S. Desai (ed.):Constitutive Laws for Engineering MaterialsElsevier Applied Science, Amsterdam, 1987, pp. 301–310.

    Google Scholar 

  11. F. Darve, H. Dendani: An incrementally non-linear constitutive relation and its predictions, in: A.S. Saada, G.F. Bianchini (eds.):Constitutive Equations for Granular Non-Cohesive SoilsBalkema, Rotterdam, 1989, pp. 237–254.

    Google Scholar 

  12. F. Darve, S. Labanieh: Incremental constitutive law for sands and clays, simulation of monotonic and cyclic testsInt. J. Num. Anal. Meth. Geomech. 6pp. 243–273, 1982.

    Article  MATH  Google Scholar 

  13. F. Darve, F. Laouafa: Instabilities in granular materials and application to landslidesMech. Coh.-Frict. Mater. 5(8)pp. 627–652, 2000.

    Article  Google Scholar 

  14. F. Darve, X. Roguiez: Instabilities in granular materials, in: D.R.J. Owen, E. Onate, E. Hinton (eds.):Computational Plasticity - Fundamentals and ApplicationsCIMNE, Barcelona, 1997, pp. 720–727.

    Google Scholar 

  15. R.D. Davis, G. Mullenger: A rate-type constitutive model for soils with critical stateInt. J. Num. Anal. Meth. Geomech. 2pp. 255–282, 1978.

    Article  MATH  Google Scholar 

  16. H. Di Benedetto, F. Darve: Comparaison de lois rhéologique en cinématique rotationnelleJ. Mécan. Théor. Appl. 2(5)pp. 769–798, 1983.

    MATH  Google Scholar 

  17. C. Di Prisco, R. Nova: Stability problems related to static liquefaction of loose sand, in: J. Desrues, R. Chambon, I. Vardoulakis (eds.):Localisation and Bifurcation Theory for Soils and RocksBalkema, Rotterdam, 1994, pp. 59–70.

    Google Scholar 

  18. C. Di Prisco, R. Matiotti, R. Nova: Theoretical investigation of undrained stability of shallow submerged slopesGéotechnique 45pp. 479–496, 1995.

    Article  Google Scholar 

  19. J.M. Duncan, C.Y. Chang: Non-linear analyses of stress and stress and strain in soilsJ. Soil. Mech. and Found. Div. ASCE 95(SM5)pp. 1629–1653, 1970.

    Google Scholar 

  20. G. Gudehus: A comparison of some constitutive laws for soils under radially loading symmetric loading and unloading, in: W. Whittke (ed.):Proc. 3rd Int. Conf. Num. Meth. Geomech.Balkema, Rotterdam, 4, pp. 1309–1324, 1979.

    Google Scholar 

  21. P. Guélin: Note sur l’hystérisis mécaniqueJ. Mécan. 19(2)pp. 217–247, 1980.

    MATH  Google Scholar 

  22. P.Y. Hicher:Comportement Mécanique des Argiles Saturées sur Divers Chemins de Sollicitations Monotones et Cycliques: Application à une Modélisation Élasto-Plastique et Visco-ÉlastiquePh.D. thesis, Ecole Centrale de Paris, 1985.

    Google Scholar 

  23. R. Hill: A general theory of uniqueness and stability in elastic-plastic solidsJ. Mech. Phys. Solids 6pp. 239–249, 1958.

    Google Scholar 

  24. S. Imposimato, R. Nova: An investigation on the uniqueness of the incremental response of elastoplastic models for virgin sandMech.Coh.-Frict. Mater. 3pp. 65–87, 1998.

    Article  Google Scholar 

  25. D. Kolymbas: A rate dependent constitutive equation for soilsMech. Res. Comm. 4(6)pp. 367–372, 1977.

    Article  Google Scholar 

  26. P.V. Lade: Elasto-plastic stress theory for cohesionless soils with curved yield surfacesInt. J. Solids Struct. 13pp. 1019–1035, 1977.

    Article  MATH  Google Scholar 

  27. F. Laouafa:Analyse et Développement de Méthodes d’Éléments Finis. Applications aux Mod¨¨les Incrémentaux de Type InterpolationPh.D. thesis, INSA, Lyon, 1996.

    Google Scholar 

  28. F. Laouafa, P. Royis: Eléments finis déplacements. Nouvelle forme du probl¨¨me algébrique et algorithmes adaptésC. R. Acad. Sc. Paris, Série IIb 325pp. 347–352, 1997.

    MATH  Google Scholar 

  29. B. Loret:Formulation d’Une Loi de Comportement Élasto-Plastique des Milieux GranulairesD.I. thesis, Ecole Polytechnique, 1981.

    Google Scholar 

  30. M. Méghachou:Stabilité des Sables Lâches. Essais et ModélisationsPh.D. thesis, Université Joseph Fourier, Grenoble, 1993.

    Google Scholar 

  31. Z. Mroz: On the description of anisotropic work hardeningJ. Mech. Phys. Sci. 15pp. 163–175, 1967.

    Article  Google Scholar 

  32. R. Nova, D.M. Wood: A constitutive model for sand in triaxial compressionInt. J. Num. Anal. Meth. Geomech. 3pp. 255–278,1979.

    Article  Google Scholar 

  33. D.R. Owen, W.O. Williams: On the time derivatives of equilibrated response functionsArch. Rat. Mech. Anal. 33(4)pp. 288–306, 1969.

    Article  MathSciNet  MATH  Google Scholar 

  34. J.H. Prevost: Plasticity theory for soil stress-strain behaviourJ. Eng. Mech. Div. ASCE 104(EM5)pp. 1177–1194, 1978.

    Google Scholar 

  35. C. Truesdell, W. Noll: The non-linear field theories of mechanics, in: S. Flügge (ed.):Handbuch der PhysikSpringer-Verlag, Berlin III/3, 1965.

    Google Scholar 

  36. K.C. Valanis: A theory of viscoplasticity without a yield surfaceArchives of Mechanics 23pp. 517–5511971.

    MathSciNet  MATH  Google Scholar 

  37. I. Vardoulakis, M. Goldscheider, G. Gudehus: Formation of shear bands in sand bodies as a bifurcation problemInt. J. Num. Anal. Meth. Geomech. 2pp. 99–128, 1978.

    Article  Google Scholar 

  38. P. Vermeer: A double hardening model for sandGeotechnique28 (4), pp. 413–433, 1978.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Darve, F., Laouafa, F. (2002). Constitutive Equations and Instabilities of Granular Materials. In: Capriz, G., Ghionna, V.N., Giovine, P. (eds) Modeling and Mechanics of Granular and Porous Materials. Modeling and Simulation in Science, Engineering and Technology. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0079-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0079-6_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6603-7

  • Online ISBN: 978-1-4612-0079-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics