Skip to main content

Thermodynamical Aspects of Classical Lattice Systems

  • Chapter
Book cover In and Out of Equilibrium

Part of the book series: Progress in Probability ((PRPR,volume 51))

Abstract

The main theme of the lectures is large deviations theory using ideas of Statistical Mechanics. A large deviations principle for empirical measures is obtained for a large class of random fields, called asymptotically decoupled measures. The connection between the existence of a large deviations principle for empirical measures and the notions of equilibrium measures and Gibbs measures is explained. As a consequence of the large deviations principle for empirical measures, I prove conditional limit theorems, extending previous results.

In a separate section, which can be read independently, I discuss the relevance of these general results for Equilibrium Statistical Mechanics of classical lattice systems; it is a short and concise introduction to Statistical Mechanics. Equilibrium Statistical Mechanics is derived from Statistical Thermodynamics and the fundamental role of Boltzmann entropy is emphasized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. R. Bowen, Equilibrium states and ergodic theory of Anosov diffeomorphisms, Lecture Notes in Mathematics 470, Springer, Berlin, 1975.

    Google Scholar 

  2. F.A. Berezin and Y. Sinai, Existence of a phase transition for the lattice gas with interparticle attractionTransaction Moscow Math. Soc. 17(1967), 219–235.

    Google Scholar 

  3. A. Bronsted, Conjugate convex functions in topological vector spacesMat. Fys. Medd. Dan. Vid. Selk.34, no. 2 (1964), 3–27.

    Google Scholar 

  4. J. Bricmont, J.L. Lebowitz, and C.-E. Pfister, On the equivalence of boundary conditionsJ. Stat. Phys.21 (1979), 573–582.

    Article  MathSciNet  Google Scholar 

  5. W. Bryc, A Dembo, Large deviations and strong mixing Ann.Inst. H. Poincaré32 (1996), 549–569.

    MATH  MathSciNet  Google Scholar 

  6. F. Comets, Grandesd éviations pour des champs de Gibbs surℤ d C. R. Acad. Sci. Série 1 303 (1986), 511–514.

    MathSciNet  Google Scholar 

  7. I. Csiszér, Sanov property, generalized I-projection and a conditional limit theorem, Ann.Prob.12 (1984), 768–793.

    Article  Google Scholar 

  8. G. Dal Maso, AnIntroduction to F-convergenceBirkhäuser, Basel, 1993.

    Book  Google Scholar 

  9. J.-D. Deuschel and D.W. StroockLarge DeviationsAcademic Press, New York, 1989.

    MATH  Google Scholar 

  10. R.L. Dobrushin, Existence of phase transitions in models of a lattice gas, Proc.Berkeley Symposium on Prob. Th. and Statisticsvol. III, (1965), 73–87.

    Google Scholar 

  11. M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time - ICommun. Pure Appl. Math.28 (1975), 1–47.

    Article  MATH  MathSciNet  Google Scholar 

  12. M.D. Donsker and S.R.S. Varadhan, Asymptotic evaluation of certain Markov process expectations for large time - IIICommun. Pure Appl. Math.29 (1976), 389–461.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Dembo and O. ZeitouniLarge Deviations Techniques and ApplicationsJones and Bartlett Publishers, Boston, 1993.

    MATH  Google Scholar 

  14. R.S. EllisEntropy Large Deviations and Statistical MechanicsSpringer, Berlin, 1985.

    MATH  Google Scholar 

  15. A.C.D. van Enter, R. Fernández, and A.D. Sokal, Regularity properties and pathologies of position-space renormalization-group transformation: Scope and limitations of Gibbsian theoryJ. Stat. Phys.72 (1993), 879–1167.

    Article  MATH  Google Scholar 

  16. I. Ekeland and R. TemamAnalyse convexe et problémes variationnels, Dunod, GauthierèVillars, Paris, Bruxelles, Montréal, 1974.

    Google Scholar 

  17. H. Föllmer and S. Orey, Large deviations for the empirical field of a Gibbs measureAnn. Prob. 16(1988), 961–977.

    Article  MATH  Google Scholar 

  18. H.O. GeorgiiGibbs Measures and Phase TransitionsWalter de Gruyter, Berlin, New York, 1988.

    Book  MATH  Google Scholar 

  19. H.O. Georgii, Large deviations and maximum entropy principle for interacting random fields onZ d Ann. Prob. 21 (1993), 1845–1875.

    Article  MATH  MathSciNet  Google Scholar 

  20. H.O. Georgii and Y. Higuchi, Percolation and the number of phases in the 2D Ising modelJ. Math. Phys. 41(2000), 1153–1169.

    Article  MATH  MathSciNet  Google Scholar 

  21. R.B. IsraelConvexity in the Theory of Lattice GasesPrinceton University Press, Princeton, 1979.

    MATH  Google Scholar 

  22. E.T. JaynesPapers on Probability Statistics and Statistical Physics (R.D.Rosenkrantz, ed.), D.Reidel Publishing Co., Dordrecht, Boston, London, 1983.

    Google Scholar 

  23. G. KellerEquilibrium States in Ergodic TheoryCambridge University Press, Cambbridge, 1998.

    MATH  Google Scholar 

  24. B. Kahn and G.E. Uhlenbeck, On the Theory of CondensationPhysica 5(1938), 399–416.

    Article  Google Scholar 

  25. O.E. Lanford, Entropy and equilibrium states in classical mechanics. InStatistical Mechanics and Mathematical Problems(A. Lenard, ed.), Lecture Notes in Physics 20, Springer, Berlin, 1973.

    Google Scholar 

  26. D. Lind and B. MarkusSymbolic Dynamics and CodingCambridge University Press, Cambridge, 1995.

    Book  MATH  Google Scholar 

  27. J.T. Lewis and C.-E. Pfister, Thermodynamic probability theoryRussian Math. Surveys 50(1995), 279–317.

    Article  MATH  MathSciNet  Google Scholar 

  28. J.T. Lewis, C.-E. Pfister, and W.G. Sullivan, Large deviations and the thermodynamic formalism: A new proof of the equivalence of ensembles. InOn Three Levels(M. Fannes, C. Macs, and A. Verbeure, eds.), Plenum Press, pp. 183–193, 1994.

    Chapter  Google Scholar 

  29. J.T. Lewis, C.-E. Pfister, and W.G. Sullivan, The equivalence of ensembles for lattice systems: Some examples and a counterexampleJ. Stat. Phys.77 (1994), 397–419.

    Article  MATH  MathSciNet  Google Scholar 

  30. J.T. Lewis, C.-E. Pfister, and W.G. Sullivan, Entropy, concentration of probability and conditional limit theoremsMarkov Processes and Related Fields 1 (1995), 319–386.

    MATH  MathSciNet  Google Scholar 

  31. J.T. Lewis, C.-E. Pfister, and W.G. Sullivan, Generic points for stationary measures via large deviation theoryMarkov Processes and Related Fields 5(1999), 235–267.

    MATH  MathSciNet  Google Scholar 

  32. A. Martin-LöfStatistical Mechanics and the Foundations of ThermodynamicsLecture Notes in Physics 101, Springer, Berlin, 1979.

    Google Scholar 

  33. A. Meda and P. Ney, The Gibbs conditioning principle for Markov chains. InPerplexing Problems in Probability(M. Bramson and R. Durrett, eds.), Progress in Probability 44, pp. 385–398, Birkhäuser, Basel, 1999.

    Chapter  Google Scholar 

  34. R.A. Minios, Lectures on statistical physicsRussian Math. Surveys 23(1968), 137–196.

    Article  Google Scholar 

  35. S. Olla, Large deviation for Gibbs random fieldsProb. Th. Rel. Fields77 (1988), 343–357.

    Article  MATH  MathSciNet  Google Scholar 

  36. R. Peierls, On Ising’s model of ferromagnetismProc. Carob. Phil. Soc. 32(1936), 477–481.

    Article  MATH  Google Scholar 

  37. C.-E. Pfister and W.G. Sullivan, Billingsley dimension, preprint, 2000.

    Google Scholar 

  38. R.T. RockafellarConvex AnalysisPrinceton University Press, Princeton, 1970.

    MATH  Google Scholar 

  39. S. Roelly and H. Zessin, The equivalence of equilibrium principles in statistical mechanics and some applications to large particle systemsExpositiones Mathematicae 11(1993), 385–405.

    MATH  MathSciNet  Google Scholar 

  40. D. Ruelle, Correlation functionalsJ. Math. Phys. 6(1965), 201–220.

    Article  MATH  MathSciNet  Google Scholar 

  41. D. RuelleThermodynamic Formalism: The Mathematical Structures of Classical Equilibrium Statistical Mechanics. Addison-Wesley, Reading, MA, 1978.

    MATH  Google Scholar 

  42. C. Schroeder, I-projection and conditional limit theorems for discrete parameter Markov processesAnn. Prob. 21(1993), 721–758.

    Article  MATH  MathSciNet  Google Scholar 

  43. B. SimonThe Statistical Mechanics of Lattice GasesPrinceton Univ. Press, Princeton, 1993.

    MATH  Google Scholar 

  44. Y. Sinai, Gibbs measures in ergodic theoryRussian Math. Surveys 27(1972), 21–69.

    Article  MATH  MathSciNet  Google Scholar 

  45. A.D. Sokal, Existence of compatible families of proper regular conditional probabilitiesZ. Wahrscheinlichkeitstheorie verw. Gebiete 56(1981), 537–548.

    Article  MATH  MathSciNet  Google Scholar 

  46. S.R.S. VaradhanLarge Deviations and ApplicationsSociety for Industrial and Applied Mathematics, Philadelphia, Pennsylvania, 1984.

    Book  Google Scholar 

  47. P. WaltersAn Introduction to Ergodic TheorySpringer, Berlin, 1981.

    Google Scholar 

  48. C.N. Yang and T.D. Lee, Statistical Theory of equations of State and Phase Transitions. I. Theory of CondensationPhys. Rev. 87(1952), 404–409.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Pfister, CE. (2002). Thermodynamical Aspects of Classical Lattice Systems. In: Sidoravicius, V. (eds) In and Out of Equilibrium. Progress in Probability, vol 51. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0063-5_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0063-5_18

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6595-5

  • Online ISBN: 978-1-4612-0063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics