Skip to main content

Geometric and Probabilistic Aspects of Boson Lattice Models

  • Chapter
Book cover In and Out of Equilibrium

Part of the book series: Progress in Probability ((PRPR,volume 51))

Abstract

This review describes quantum systems of bosonic particles moving on a lattice. These models are relevant in statistical physics, and have natural ties with probability theory. The general setting is recalled and the main questions about phase transitions are addressed. A lattice model with Lennard-Jones potential is studied as an example of a system where first-order phase transitions occur.

A major interest of bosonic systems is the possibility of displaying a Bose-Einstein condensation. This is discussed in the light of the main existing rigorous result, namely its occurrence in the hard-core boson model. Finally, we consider another approach that involves the lengths of the cycles formed by the particles in the space-time representation; Bose-Einstein condensation should be related to positive probability of infinite cycles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aizenman and B. Nachtergaele, Geometric aspects of quantum spin statesCommun. Math. Phys.164 (1994), 17–63.

    Article  MATH  MathSciNet  Google Scholar 

  2. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, Observation of Bose-Einstein condensation in a dilute atomic vaporScience269 (1995), 198–202.

    Article  Google Scholar 

  3. C. Borgs, R. Koteck’, and D. Ueltschi, Low temperature phase diagrams for quantum perturbations of classical spin systemsCommun. Math. Phys.181 (1996), 409–446.

    Article  MATH  Google Scholar 

  4. C. Borgs, R. Koteck’, and D. Ueltschi, Incompressible phase in lattice systems of interacting bosons, unpublished, 1997.

    Google Scholar 

  5. A. Bovier and M. Zahradník, A simple inductive approach to the problem of convergence of cluster expansions of polymer modelsJ. Stat. Phys.100 (2000), 765–778.

    Article  MATH  Google Scholar 

  6. M. Cassandro and P. Picco, Existence of a phase transition in a continuous quantum systemsJ. Stat. Phys.103 (2001), 841–856.

    Article  MATH  MathSciNet  Google Scholar 

  7. J. Conlon and J.P. Solovej, Random walk representations of the Heisenberg modelJ. Stat. Phys.64 (1991), 251–270.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Conlon and J.P. Solovej, Upper bound on the free energy of the spin 1/2 Heisenberg ferromagnetLett. Math. Phys.23 (1991), 223–231.

    Article  MATH  MathSciNet  Google Scholar 

  9. N. Datta, R. Fernández, and J. Fröhlich, Low-temperature phase diagrams of quantum lattice systems. I. Stability for quantum perturbations of classical systems with finitely-many ground statesJ. Stat. Phys.84 (1996), 455–534.

    Article  MATH  Google Scholar 

  10. N. Datta, R. Fernández, J. Fröhlich, and L. Rey-Bellet, Low-temperature phase diagrams of quantum lattice systems. II. Convergent perturbation expansions and stability in systems with infinite degeneracyHell). Phys. Acta69 (1996), 752–820.

    MATH  Google Scholar 

  11. R.L. Dobrushin, Estimates of semi-invariants for the Ising model at low temperatures. InTopics of Statistical and Theoretical PhysicsAmerican Mathematical Society Transi. Ser. 2, 177, pp. 59–81, 1996.

    MathSciNet  Google Scholar 

  12. F.J. Dyson, E.H. Lieb, and B. Simon, Phase transitions in quantum spin systems with isotropic and nonisotropic interactionsJ. Stat. Phys.18 (1978), 335–383.

    Article  MathSciNet  Google Scholar 

  13. R.P. Feynman, Atomic theory of the A transition in HeliumPhys. Rev.91 (1953), 1291–1301.

    Article  MATH  MathSciNet  Google Scholar 

  14. M.P.A. Fisher, P.B. Weichman, G. Grinstein, and D. Fisher, Boson localization and the superfluid-insulator transitionPhys. Rev. B40 (1989), 546–570.

    Article  Google Scholar 

  15. J. Fröhlich, L. Rey-Bellet, and D. Ueltschi, Quantum lattice models at intermediate temperatures, math-ph/0012011Commun. Math. Phys.224 (2001), 33–63.

    Article  MATH  Google Scholar 

  16. J. Fröhlich, B. Simon, and T. Spencer, Infrared bounds, phase transitions and continuous symmetry breakingCommun. Math. Phys.50 (1976), 7995.

    Article  Google Scholar 

  17. J. Ginibre, Some applications of functional integration in statistical mechanics. InStatistical Mechanics and Field Theory(C. De Witt and R. Stora, eds.), Gordon and Breach, 1971.

    Google Scholar 

  18. D. Ioffe, A note on the quantum Widom-Rowlinson modelJ. Stat. Phys.106 (2002), 375–384.

    Article  MATH  MathSciNet  Google Scholar 

  19. R.B. Israel, Convexity in the Theory of Lattice Gases, Princeton University Press, 1979.

    Google Scholar 

  20. T. Kennedy, E.H. Lieb, and B.S. Shastry, The X-Y model has long-range order for all spins and all dimensions greater than onePhys. Rev. Lett.61 (1988), 2582–2584.

    Article  Google Scholar 

  21. R. KoteckÿPhase transitions of lattice models Rennes Lectures (1996).

    Google Scholar 

  22. R. Koteckÿ and D. Preiss, Cluster expansion for abstract polymer modelsCommun. Math. Phys.103 (1986), 491–498.

    Article  MATH  Google Scholar 

  23. R. Koteckÿ and D. Ueltschi, Effective interactions due to quantum fluctuationsCommun. Math. Phys.206 (1999), 289–335.

    Article  MATH  Google Scholar 

  24. J.L. Lebowitz, M. Lenci, and H. Spohn, Large deviations for ideal quantum systemsJ. Math. Phys.41 (2000), 1224–1243.

    Article  MATH  MathSciNet  Google Scholar 

  25. E.H. Lieb, The Bose fluid. InLectures in Theoretical PhysicsVol.VII C (W.E. Brittin ed.), Univ. of Colorado Press, pp. 175–224, 1965.

    Google Scholar 

  26. E.H. Lieb, The Bose gas: A subtle many-body problem. InProceedings of the XIII Internat. Congress on Math. Physics, International Press, London, 2001.

    Google Scholar 

  27. E.H. Lieb and J. Yngvason, Ground state energy of the low density Bose gasPhys. Rev. Lett.80 (1998), 2504–2507.

    Article  Google Scholar 

  28. O. Penrose and L. Onsager, Bose-Einstein condensation and liquid HeliumPhys. Rev.104 (1956), 576–584.

    Article  MATH  Google Scholar 

  29. Ch.-E. Pfister, Thermodynamical aspects of classical lattice systems, this volume, pp. 393–472.

    Google Scholar 

  30. S.A. Pirogov and Ya.G. Sinai, Phase diagrams of classical lattice systemsTheoretical and Mathematical Physics25 (1975), 1185–1192; 26 (1976), 39–49.

    Article  MathSciNet  Google Scholar 

  31. B. SimonThe Statistical Mechanics of Lattice GasesPrinceton University Press, 1993.

    Google Scholar 

  32. Ya. G. Sinai, Theory of Phase Transitions: Rigorous Results, Pergamon Press, 1982.

    Google Scholar 

  33. A. Sütô, Percolation transition in the Bose gasJ. Phys. A26 (1993), 4689–4710.

    Article  MathSciNet  Google Scholar 

  34. A. Süt¨®, Non-uniform ground state for the Bose gasJ. Phys. A34 (1993), 37–55.

    Article  Google Scholar 

  35. B. T¨®th, Improved lower bound on the thermodynamic pressure of the spin 1/2 Heisenberg ferromagnetLett. Math. Phys.28 (1993), 75–84.

    Article  MathSciNet  Google Scholar 

  36. D. Ueltschi, Analyticity in Hubbard modelsJ. Stat. Phys.95 (1999), 693–717.

    Article  MATH  MathSciNet  Google Scholar 

  37. V. Zagrebnov and J.-B. Bru, The Bogoliubov model of weakly imperfect Bose gasPhys. Rep.350 (2001), 291–434.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Ueltschi, D. (2002). Geometric and Probabilistic Aspects of Boson Lattice Models. In: Sidoravicius, V. (eds) In and Out of Equilibrium. Progress in Probability, vol 51. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0063-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0063-5_17

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6595-5

  • Online ISBN: 978-1-4612-0063-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics