Effects of Pressure Pulsation on Oxygen Transfer Rate Measured by Sulfite Method

Part of the Applied Biochemistry and Biotechnology book series (ABAB)

Abstract

Pressure pulsation (PP) was investigated for its effects on oxygen transfer rate (OTR) measured by sulfite oxidation. By manipulating airflow rate, 0.41–1.2 vvm, and a control valve in a 4-L bioreactor, the frequency of PP was varied at different gas pressures3–15 psig. A mathematical model of OTR was built and compared to experimental data. OTR was also examined at constant gas pressure, 4.5–15.0 psig. The results indicate a good agreement between measurement and model prediction. OTR above 9 psig during PP showed significant enhancement at 25°C. This proves that PP not only affects the elevation of DO level, but also increases the interfacial area and mass transfer coefficient.

Index Entries

Oxygen transfer pressure pulsation sulfite oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Finn, R. K. (1954), Bacteriol. Rev. 18, 254–274.PubMedGoogle Scholar
  2. 2.
    Hixson, A. W. and Gaden, E. L. Jr. (1950), Ind. Eng. Chem. 42, 1792–1801.CrossRefGoogle Scholar
  3. 3.
    Kilburn, D. G. and Webb, F. C. (1968), Biotechnol. Bioeng. 10, 801–814.CrossRefGoogle Scholar
  4. 4.
    Kataoka, H., Sato, S., Mukataka, S., et al. (1986), Biotechnol. Bioeng. 28, 663–667.PubMedCrossRefGoogle Scholar
  5. 5.
    Trager, M., Qazi, G. N., Buse, R., and Onken, U. (1992), J. Ferment. Bioeng. 74, 282–287.CrossRefGoogle Scholar
  6. 6.
    Rhiel, M. and Murhammer, D. W. (1995), Biotechnol. Bioeng. 47, 640–650.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang, W.-C., Gong, C. S., and Tsao, G. T. (2002), Appl. Biochem. Biotechnol. 98–100, 909–920.PubMedCrossRefGoogle Scholar
  8. 8.
    Trujillo-Roldan, M. A., Pena, C., Ramirez, O. T., and Galindo, E. (2001), Biotechnol. Prog. 17, 1042–1048.PubMedCrossRefGoogle Scholar
  9. 9.
    Yoshida, F., Ikeda, A., Imakawa, S., and Miura, Y. (1960), Ind. Eng. Chem. 52, 435–438.CrossRefGoogle Scholar
  10. 10.
    Shuler, M. L. and Kargi, F. (1992), Bioprocess Engineering, Prentice Hall, Englewood Cliffs, NJ, p. 165.Google Scholar
  11. 11.
    Schultz, J. S. and Gaden, E. L. Jr. (1956), Ind. Eng. Chem. 48, 2209–2212.CrossRefGoogle Scholar
  12. 12.
    Cooper, C. M, Fernstrom, G. A., and Miller, S. A. (1944), Ind. Eng. Chem. 36, 504–509.CrossRefGoogle Scholar
  13. 13.
    Danckwerts, P. V. (1951), Ind. Eng. Chem. 43, 1460–1467.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Wei-Cho Huang
    • 1
  • Cheng S. Gong
    • 1
  • George T. Tsao
    • 1
  1. 1.School of Chemical EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations