Saccharification of Marine Microalgae Using Marine Bacteria for Ethanol Production

  • Mitsufumi Matsumoto
  • Hiroko Yokouchi
  • Nobukazu Suzuki
  • Hiroshi Ohata
  • Tadashi Matsunaga
Part of the Applied Biochemistry and Biotechnology book series (ABAB)


The saccharification of marine microalgae using amylase from marine bacteria in saline conditions was investigated. An amylase-producing bacterium, Pseudoalterimonas undina NKMB 0074 was isolated and identified. The green microalga NKG 120701 was determined to have the highest concentration of intracellular carbohydrate and was found from our algal culture stocks. P. undina NKMB 0074 was inoculated into suspensions containing NKG 120701 cells and increasingly reduced suspended sugars with incubation time. Terrestrial amylase and glucoamylase were inactive in saline suspension. Therefore, marine amylase is necessary in saline conditions for successful saccharification of marine microalgae.

Index Entries

Saccharification marine algae marine bacteria amylase ethanol biomass 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Burgess, J. G., Iwamoto, K., Miura, Y., TaKano, H., and Matsunaga, T. (1993), Appl. Microbiol. Biotechnol. 39, 456–459.CrossRefGoogle Scholar
  2. 2.
    Miura, Y., Sode, K., Nakamura, N., Matsunaga, N., and Matsunaga, T. (1993), FEMS Microbiol. Lett. 107, 163–168.PubMedCrossRefGoogle Scholar
  3. 3.
    Wachi, Y., Burgess, J. G., Takahashi, J., Nakamura, N., and Matsunaga, T. (1995), J. Biotechnol. 2, 210–213.Google Scholar
  4. 4.
    Wake, H., Akasaka, A., Umetsu, H., Ozeki, Y., Shimomura, K., and Matsunaga, T. (1992), Plant Cell Rep. 11, 62–65.CrossRefGoogle Scholar
  5. 5.
    Miura, Y., Sode, K., Nakamura, N., and Matsunaga, T. (1993), J. Mar. Biotechnol. 1, 134–146.Google Scholar
  6. 6.
    Kumazawa, S. and Mitsui A. (1981), Int. J. Hydrogen Energy 6, 339–348.CrossRefGoogle Scholar
  7. 7.
    Nandi, R. and Sengupta S. (1998), Crit. Rev. Microbiol. 24, 61–84.PubMedCrossRefGoogle Scholar
  8. 8.
    Sudo, H., Burgess, J. G., Takemasa, H., Nakamura, N., and Matsunaga, T. (1995), Curr. Microbiol. 30, 219–222.CrossRefGoogle Scholar
  9. 9.
    Mitsui, A. (1975), in Proceedings of the 3rd Ineternational Ocean Development Conference.Google Scholar
  10. 10.
    Borowitzka, L.J. and Borowitzka M.A. (1989), in Industrial Production: Method and Economics. Cresswell, R. C., Rees, T. A. V., and Shah, N., eds., Elsevier Applied Science, London, UK, pp. 294–316.Google Scholar
  11. 11.
    Borowitzka, M. A. (1992), J. Appl. Phycol. 4, 267–279.CrossRefGoogle Scholar
  12. 12.
    Patterson, G. M. L. (1996), J. Sci. Ind. Res. 55, 669–684.Google Scholar
  13. 13.
    Mielenz, J. R. (2001), Curr. Opin. Microbiol. 4, 324–329.PubMedCrossRefGoogle Scholar
  14. 14.
    Razmovski, R. and Pejin D. (1996), Folia Microbiol. 41, 201–207.CrossRefGoogle Scholar
  15. 15.
    Joachimsthal, E. and Rogers P. (2000), Appl. Biochem. Biotechnol. 84/86, 343–356.CrossRefGoogle Scholar
  16. 16.
    Krishhan, M., Blanco, M., Shattuck, C. K., Nghiem, N. P., and Davison, B. H. (2000), Appl. Biochem. Biotechnol. 84/86, 525–541.Google Scholar
  17. 17.
    Lawford, H. and Rousseau, J. (2000), Appl. Biochem. Biotechnol. 84/86, 277–293.Google Scholar
  18. 18.
    Sandhu, D. and Joshi V. (1994), Indian J. Exp. Biol. 32, 873–876.PubMedGoogle Scholar
  19. 19.
    Montesinos, T. and Navarro, J.-M. (2000), Enzyme Microbiol. Technol. 27, 362–370.CrossRefGoogle Scholar
  20. 20.
    Abouzied, M. M. and Reddy, A. C. (1986), Appl. Environ. Microbiol. 52, 1055–1059.PubMedGoogle Scholar
  21. 21.
    Fumihisa, K., Sawada, T., Nakamura, Y., Ohnaga, M., Godliving, M., and Ushiyama, T. (1998), Appl. Biochem. Biotechnol. 69, 177–189.CrossRefGoogle Scholar
  22. 22.
    Rippka, R., Deruelles, J., Watherbury, J. B., Herdman, M., and Stanier, R. Y. (1979), J. Gen. Microbiol. 111, 1–61.CrossRefGoogle Scholar
  23. 23.
    Miller, G. L.(1959), Anal. Chem. 31, 426–428.CrossRefGoogle Scholar
  24. 24.
    Lowry, O., Rosebrough, N. J., and Randall, R. J. (1951), J. Biol. Chem. 193, 265–275.PubMedGoogle Scholar
  25. 25.
    Aristos, A. and Merja, P. (2000), Curr. Opin. Biotechnol. 11, 187–198.CrossRefGoogle Scholar
  26. 26.
    Matsunaga, T. and Izumida, H. (1984), Biotechnol. Bioeng. Symp. 14, 407–418.Google Scholar
  27. 27.
    Matsumoto, M., Yoshida, E., Takeyama, H., and Matsunaga, T. (2000), Appl. Biochem. Biotech. 84/86, 51–57.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Mitsufumi Matsumoto
    • 1
    • 3
  • Hiroko Yokouchi
    • 1
  • Nobukazu Suzuki
    • 2
  • Hiroshi Ohata
    • 3
  • Tadashi Matsunaga
    • 1
  1. 1.Department of BiotechnologyTokyo University of Agriculture and TechnologyKoganei, TokyoJapan
  2. 2.Chemical and Insulation Technology GroupPower and Industrial Systems R&D Center, Toshiba Co. Ltd.Tsurumi-ku, YokohamaJapan
  3. 3.New Energy and Technology Development DepartmentElectric Power Development Co. Ltd.Chuo-ku, TokyoJapan

Personalised recommendations