The Maxwell-Lorentz Spacetime Relation

  • Friedrich W. Hehl
  • Yuri N. Obukhov
Chapter
Part of the Progress in Mathematical Physics book series (PMP, volume 33)

Abstract

So far, the Maxwell equations (B.4.9) and (B.4.10) represent an underdetermined system of partial differential equations of first order for the excitationHand the field strengthF.In order to reduce the number of independent variables, we have to set up a universal relation betweenHandFwhich is assumed to be local:H = H(F).We call this theelectromagnetic spacetime relation.Therefore we can complete electrodynamics, formulated in Part B up to now metric-and connection-free, by introducing a suitable spacetime relation as afifth axiom.

Keywords

Permeability Manifold Covariance Peris Stein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.O. Barut and R. RgczkaTheory of Group Representations and Applications(PWN — Polish Scientific Publishers: Warsaw, 1977).Google Scholar
  2. 2.
    J.D. BekensteinFine-structure constant variability equivalence principle and cosmologyEprint Archive gr-gc/0208081, 18 pages (August 2002).Google Scholar
  3. 3.
    C.H. BransComplex 2-forms representation of the Einstein equations: The Petrov Type III solutions J. Math. Phys.12 (1971) 1616–1619.MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    C.H. Brans and R.H. DickeMach’s principle and a relativistic theory of gravitation Phys. Rev.124 (1961) 925–935.MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    R. Capovilla, T. Jacobson, and J. DellGeneral relativity without the metric Phys. Rev.Lett. 63 (1989) 2325–2328.MathSciNetCrossRefGoogle Scholar
  6. 6.
    L. Cooper and G.E. StedmanAxion detection by ring lasers Phys. Lett.B357 (1995) 464–468.Google Scholar
  7. 7.
    R.H. DickeThe theoretical significance of experimental relativity(Gordon and Breach: New York, 1964).Google Scholar
  8. 8.
    B. FauserProjective relativity: Present status and outlook Gen. Relat. Gray.33 (2001) 875–887MathSciNetMATHCrossRefGoogle Scholar
  9. 9.
    G.B. Field and S.M. Carroll, Cosmological magnetic fields from primordial helicity, Phys. Rev. D62 (2000) 103008, 5 pages.Google Scholar
  10. 10.
    J.L. Flowers and B.W. PetleyProgress in our knowledge of the fundamental constants in physics Rep. Progr. Phys.64 (2001) 1191–1246.CrossRefGoogle Scholar
  11. 11.
    F.R. GantmacherMatrizenrechnung.Teil I: Allgemeine Theorie (VEB Deutscher Verlag der Wissenschaften: Berlin, 1958).Google Scholar
  12. 12.
    A. Gross and G.F. RubilarOn the derivation of the spacetime metric from linear electrodynamics Phys.Lett. A285 (2001) 267–272.Google Scholar
  13. 13.
    J. HadamardLeçons sur la propagation des ondes et les équations de l’hydrodynamique(Hermann: Paris, 1903).MATHGoogle Scholar
  14. 14.
    G. HarnettMetrics and dual operators J. Math. Phys.32 (1991) 84–91.MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    G. HarnettThe bivector Clifford algebra and the geometry of Hodge dual operators J. Phys.A25 (1992) 5649–5662.MathSciNetGoogle Scholar
  16. 16.
    M. Haugan and C. LämmerzahlOn the experimental foundations of the Maxwell equations Ann. Physik (Leipzig)9 (2000) Special Issue, SI-119SI-124.Google Scholar
  17. 17.
    F.W. Hehl, Yu.N. Obukhov, G.F. RubilarOn a possible new type of a T odd skewon field linked to electromagnetism. In:Developments in Mathematical and Experimental PhysicsA. Macias, F. Uribe, and E. Diaz, eds. Volume A: Cosmology and Gravitation (Kluwer Academic/Plenum Publishers: New York, 2002) pp.241–256.Google Scholar
  18. 18.
    G. ‘t Hooft, Achiral alternative to the vierbein field in general relativity Nucl. Phys.B357 (1991) 211–221.CrossRefGoogle Scholar
  19. 19.
    K. HuangQuarks Leptons ê? Gauge Fields2nd ed. (World Scientific: Singapore, 1992).MATHGoogle Scholar
  20. 20.
    C.J. Isham, Abdus Salam, and J. StrathdeeBroken chiral and conformal symmetry in an effective-Lagrangian formalism Phys.Rev.D2 (1970) 685–690.Google Scholar
  21. 21.
    A.Z. JadczykElectromagnetic permeability of the vacuum and light-cone structure Bull. Acad. Pol. Sci.Sér. sci. phys. et astr. 27 (1979) 91–94.MathSciNetGoogle Scholar
  22. 22.
    P. JordanSchwerkraft und Weltall2nd ed. (Vieweg: Braunschweig, 1955).Google Scholar
  23. 23.
    R.M. Kiehn, G.P. Kiehn, and J.B. RoberdsParity and time-reversal symmetry breaking singular solutions and Fresnel surfaces Phys. Rev.A43 (1991) 5665–5671.MathSciNetGoogle Scholar
  24. 24.
    E.W. Kolb and M.S. TurnerThe Early Universe(Addison—Wesley: Redwood, 1990) Chapter 10: Axions.Google Scholar
  25. 25.
    V.A. KosteleckÿTopics in Lorentz and CPT violationInvited talk at Intern. Conf. on Orbis Scientiae 2000: Coral Gables, Ft. Lauderdale, Florida, 14–17 Dec 2000, Eprint Archive hep-ph/0104227 (2001).Google Scholar
  26. 26.
    A. KovetzElectromagnetic Theory(Oxford University Press: Oxford, 2000).MATHGoogle Scholar
  27. 27.
    L.D. Landau, E.M. Lifshitz, and L.P. PitaevskiiElectrodynamics of continuous media2nd edition (Pergamon Press: Oxford, 1984) 460 pages.Google Scholar
  28. 28.
    A. LichnerowiczRelativity theory and mathematical physicsin:“Astrofisica e cosmologia gravitazione quanti e relatività” Centenario di Einstein(Giunti Barbera: Firenze, 1979.)Google Scholar
  29. 29.
    P.J. Mohr and B.N. TaylorCODATA recommended values of the fundamental physical constants: 1998 Rev. Mod. Phys.72 (2000) 351–495.MATHCrossRefGoogle Scholar
  30. 30.
    J.E. Moody and F. WilczekNew macroscopic forces? Phys. Rev.D30 (1984) 130–138.Google Scholar
  31. 31.
    W.-T. NiA non-metric theory of gravity.Dept. Physics, Montana State University, Bozeman. Preprint December 1973. [This paper is referred to by W.-T. Ni inBull. Amer. Phys. Soc.19 (1974) 655. The paper is available viahttp://gravity5.phys.nthu.edu.tw/webpage/article4 /index.html. Google Scholar
  32. 32.
    W.-T. NiEquivalence principles and electromagnetism Phys. Rev.Lett. 38 (1977) 301–304.CrossRefGoogle Scholar
  33. 33.
    W.-T. Ni Equivalence principles and precision experiments. In Precision Measurement and Fundamental Constants II B.N. Taylor, W.D. Phillips, eds. Nat. Bur. Stand. (US) Spec. Publ. 617, US Government Printing Office, Washington, DC (1984).Google Scholar
  34. 34.
    J.F. Nieves and P.B. PalP and CP-odd terms in the photon self-energy within a medium Phys. Rev.D39 (1989) 652–659.Google Scholar
  35. 35.
    J.F. Nieves and P.B. PalThe third electromagnetic constant of an isotropic medium Am. J. Phys.62 (1994) 207–216.CrossRefGoogle Scholar
  36. 36.
    Yu.N. Obukhov and F.W. HehlSpace-time metric from linear electrodynamics Phys. Lett.B458 (1999) 466–470; F.W. Hehl, Yu.N. Obukhov, and G.F. RubilarSpacetime metric from linear electrodynamics II Ann. d. Phys. (Leipzig)9 (2000) Special issue, SI-71—SI-78; Yu.N. Obukhov, T. Fukui, and G.F. RubilarWave propagation in linear electrodynamics Phys. Rev.D62 (2000) 044050 (5 pages); G.F. Rubilar, Yu.N. Obukhov and F.W. HehlGeneral covariant Fresnel equation and the emergence of the light cone structure in pre-metric electrodynamics Int. J. Mod. Phys.Dll (2002) 1227–1242. F.W. Hehl, Yu.N. Obukhov, and G.F. RubilarLight propagation in generally covariant electrodynamics and the Fresnel equation.Invited talk at Journées Relativistes, Dublin, Ireland, 6–8 Sep 2001.Int. J. Mod. Phys.A17 (2002) 2695–2700. Yu.N. Obukhov and G.F. RubilarFresnel analysis of wave propagation in nonlinear electrodynamics Phys. Rev.D66 (2002) 024042 (11 pages).Google Scholar
  37. 37.
    Yu.N. Obukhov and S.I. TertychniyVacuum Einstein equations in terms of curvature forms Class.Quantum Gray. 13 (1996) 1623–1640.MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    R.D. Peccei and H.R. QuinnCP conservation in the presence of pseudopartides Phys. Rev. Lett.38 (1977) 1440–1443.CrossRefGoogle Scholar
  39. 39.
    A. PeresElectromagnetism geometry and the equivalence principle Ann. Phys. (NY)19 (1962) 279–286.MathSciNetMATHCrossRefGoogle Scholar
  40. 40.
    A. PeresThe speed of light need not be constantEprint Archive: grgc/0210066, 3 pages (Oct 2002).Google Scholar
  41. 41.
    F.A.E. Pirani and A. SchildConformal geometry and the interpretation of the Weyl tensor, in: Perspectives in Geometry and Relativity. Essays in honor of V. Hlavatÿ. B. Hoffmanneditor. (Indiana University Press: Bloomington, 1966) pp. 291–309.Google Scholar
  42. 42.
    C. Piron and D.J. MooreNew aspects of field theory Turk. J. Phys.19 (1995) 202–216.Google Scholar
  43. 43.
    E.J. PostThe constitutive map and some of its ramifications Ann Phys. (NY)71 (1972) 497–518.CrossRefGoogle Scholar
  44. 44.
    G.N. Ramachandran and S. Ramaseshan, Crystal optics, in: “Handbuch der Physik”, Ed. S. Flügge, Vol. XXV/1 (Springer: Berlin, 1961) 1–217.Google Scholar
  45. 45.
    G.F. RubilarLinear pre-metric electrodynamics and deduction of the light-cone Thesis(University of Cologne, June 2002); seeAnn. Phys. (Leipzig)11 (2002) 717–782.MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    V. de Sabbata and C. SivaramSpin and Torsion in Gravitation(World Scientific: Singapore, 1994).MATHCrossRefGoogle Scholar
  47. 47.
    H.B. Sandvik, J.D. Barrow, and J. MagueijoA simple cosmology with a varying fine structure constant Phys. Rev.Lett. 88 (2002) 031302 (4 pages).Google Scholar
  48. 48.
    M. SchönbergElectromagnetism and gravitation Rivista Brasileira de Fisica 1(1971) 91–122.Google Scholar
  49. 49.
    P. Sikivie, ed.Axions ‘88in:Proc. of the 5th IFT Workshop on AxionsGainesville, Florida, USA.Nucl. Phys.B (Proc. Suppl.) 72 (1999) 1–240.Google Scholar
  50. 50.
    A. SowaThe nonlinear Maxwell theory: An outlineEprint Archive physics/0103061, 22 pages (March 2001).Google Scholar
  51. 51.
    G.E. StedmanRing-laser tests of fundamental physics and geophysics Reports on Progress in Physics60 (1997) 615–688.CrossRefGoogle Scholar
  52. 52.
    G.SzivessyKristalloptikin:“Handbuch der Physik”Eds. H. Geiger and K. Scheel, Vol. 20 (Springer: Berlin, 1928) 635–904.Google Scholar
  53. 53.
    I.E. TammRelativistic crystal optics and its relation to the geometry of a bi-quadratic form Zhurn. Ross. Fiz.-Khim. Ob.57, n. 3–4 (1925) 209–224 (in Russian). Reprinted in: I.E. TammCollected Papers(Nauka: Moscow, 1975) Vol. 1, pp. 33–61 (in Russian). See also: I.E. TammElectrodynamics of an anisotropic medium in special relativity theoryibid, pp. 19–31; A short version in German, together with L.I. Mandelstam, ibid. pp. 62–67.Google Scholar
  54. 54.
    R.A. ToupinElasticity and electro-magneticsin:Non-Linear Continuum Theories C.I.M.E. Conference BressanoneItaly1965.C. Truesdell and G. Grioli coordinators, pp. 203–342.Google Scholar
  55. 55.
    C. Truesdell and R.A. ToupinThe classical field theoriesin:Handbuch der PhysikVol. III/1, S. Flügge ed. (Springer: Berlin, 1960) pp. 226–793.Google Scholar
  56. 56.
    H. UrbantkeA quasi-metric associated with SU(2) Yang-Mills fieldActaPhys. Austriaca Suppl.XIX (1978) 875–876.Google Scholar
  57. 57.
    C. Wang, Mathematical Principles of Mechanics and Electromagnetism, Part B: Electromagnetism and Gravitation (Plenum Press: New York, 1979).MATHCrossRefGoogle Scholar
  58. 58.
    S. Weinberg, Anew light boson? Phys.Rev. Lett. 40 (1978) 223–226.CrossRefGoogle Scholar
  59. 59.
    F. WilczekProblem of strong P and T invariance in the presence of instantons Phys.Rev. Lett. 40 (1978) 279–282.CrossRefGoogle Scholar
  60. 60.
    F. WilczekTwo applications of axion electrodynamics Phys.Rev. Lett. 58 (1987) 1799–1802.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Friedrich W. Hehl
    • 1
    • 2
  • Yuri N. Obukhov
    • 1
    • 3
  1. 1.Institute for Theoretical PhysicsUniversity of CologneCologneGermany
  2. 2.Department of Physics & AstronomyUniversity of Missouri-ColumbiaColumbiaUSA
  3. 3.Department of Theoretical PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations