Skip to main content

Part of the book series: Progress in Mathematical Physics ((PMP,volume 33))

  • 1649 Accesses

Abstract

In this book we display the structure underlying classical electrodynamics. For this purpose we formulate six axioms: conservation of electriccharge(first axiom), existence of the Lorentzforce(second axiom), conservation of magneticflux(third axiom), localenergy-momentumdistribution (fourth axiom), existence of an electromagneticspace timerelation (fifth axiom), and finally, the splitting of the electric current into material and external pieces (sixth axiom).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  1. B. Abbott et al. (DO Collaboration), A search for heavy pointlike Dirac monopoles, Phys. Rev. Lett. 81 (1998) 524–529.

    Article  Google Scholar 

  2. J. Audretsch and C. Lämmerzahl, A new constructive axiomatic scheme for the geometry of space-time In: Semantical Aspects of Space-Time Geometry. U. Majer, H.-J. Schmidt, eds. (BI Wissenschaftsverlag: Mannheim, 1994) pp. 21–39.

    Google Scholar 

  3. D. Baldomir and P. Hammond, Geometry and Electromagnetic Systems (Clarendon Press: Oxford, 1996).

    Google Scholar 

  4. P. Bamberg and S. Sternberg, A Course in Mathematics for Students of Physics, Vol. 2 (Cambridge University Press: Cambridge, 1990).

    Google Scholar 

  5. A.O. Barut, D.J. Moore and C. Piron, Space-time models from the electromagnetic field, Heiv. Phys. Acta 67 (1994) 392–404.

    MathSciNet  MATH  Google Scholar 

  6. W.E. Baylis, Electrodynamics. A Modern Geometric Approach (Birkhäuser: Boston, 1999).

    MATH  Google Scholar 

  7. F. Bopp, Prinzipien der Elektrodynamik, Z. Physik 169 (1962) 45–52.

    Article  MathSciNet  Google Scholar 

  8. A. Bossavit, Differential Geometry for the Student of Numerical Methods in Electromagnetism, 153 pages, file DGSNME.pdf (1991) (seehttp://www.lgep.supelec.fr/mse/perso/ab/bossavit.html

  9. W.L. Burke, Applied Differential Geometry (Cambridge University Press: Cambridge, 1985).

    Book  MATH  Google Scholar 

  10. É. Cartan, On Manifolds with an Affine Connection and the Theory of General Relativity, English translation of the French original of 1923/24 (Bibliopolis: Napoli, 1986).

    Google Scholar 

  11. Y. Choquet-Bruhat, C. DeWitt-Morette, and M. Dillard-Bleick, Analysis, Manifolds and Physics, revised ed. (North-Holland: Amsterdam, 1982).

    Google Scholar 

  12. O. Darrigol, Electrodynamics from Ampère to Einstein (Oxford University Press: New York, 2000).

    MATH  Google Scholar 

  13. G. de Rham, Differentiable Manifolds: Forms, Currents, Harmonic Forms. Transl. from the French original (Springer: Berlin, 1984).

    MATH  Google Scholar 

  14. G.A. Deschamps, Electromagnetics and differential forms, Proc. IEEE 69 (1981) 676–696.

    Article  Google Scholar 

  15. D.G.B. Edelen, Applied Exterior Calculus (Wiley: New York, 1985).

    MATH  Google Scholar 

  16. A. Einstein, Eine neue formale Deutung der Maxwellschen Feldgleichungen der Elektrodynamik, Sitzungsber. Königl. Preuss. Akad. Wiss. Berlin (1916) pp. 184–188; see also The collected papers of Albert Einstein. Vol.6, A.J. Kox et al., eds. (1996) pp. 263–269.

    Google Scholar 

  17. C.W.F. Everitt, James Clerk Maxwell. Physicist and Natural Philosopher (Charles Sribner’s Sons: New York, 1975).

    Google Scholar 

  18. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Vol. 2: Mainly Electromagnetism and Matter (Addison—Wesley: Reading, Mass., 1964).

    Google Scholar 

  19. H. Flanders, Differential Forms with Applications to the Physical Sciences. (Academic Press: New York, 1963 and Dover: New York, 1989).

    Google Scholar 

  20. T. Frankel, The Geometry of Physics: An Introduction (Cambridge University Press: Cambridge, 1997).

    MATH  Google Scholar 

  21. A. Gross and G.F. Rubilar, On the derivation of the spacetime metric from linear electrodynamics, Phys. Lett. A285 (2001) 267–272.

    Google Scholar 

  22. Y.D. He, Search for a Dirac magnetic monopole in high energy nucleus—nucleus collisions, Phys. Rev. Lett. 79 (1997) 3134–3137.

    Article  Google Scholar 

  23. F.W. Hehl and Yu.N. Obukhov, How does the electromagnetic field couple to gravity, in particular to metric, nonmetricity, torsion, and curvature? In: Gyros, Clocks, Interferometers…: Testing Relativistic Gravity in Space. C. Lämmerzahl et al., eds. Lecture Notes in Physics Vol.562 (Springer: Berlin, 2001) pp. 479–504; see also Los Alamos Eprint Archive gr-qc/0001010.

    Google Scholar 

  24. F.W. Hehl, Yu.N. Obukhov, and G.F. Rubilar, Spacetime metric from linear electrodynamics II. Ann. Physik (Leipzig) 9 (2000) Special issue, SI71—SI78.

    Google Scholar 

  25. L.L. Hirst, The microscopic magnetization: concept and application, Rev. Mod. Phys. 69 (1997) 607–627.

    Article  Google Scholar 

  26. R. Ingarden and A. Jamiolkowski, Classical Electrodynamics (Elsevier: Amsterdam, 1985).

    Google Scholar 

  27. J.D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley: New York, 1999).

    MATH  Google Scholar 

  28. A.Z. Jadczyk, Electromagnetic permeability of the vacuum and light-cone structure, Bull. Acad. Pol. Sci., Sér. sci. phys. et astr. 27 (1979) 91–94.

    MathSciNet  Google Scholar 

  29. B. Jancewicz, Multivectors and Clifford Algebra in Electrodynamics (World Scientific: Singapore, 1989).

    Google Scholar 

  30. B. Jancewicz, A variable metric electrodynamics. The Coulomb and Biot—Savart laws in anisotropic media, Ann. Phys. (NY) 245 (1996) 227–274.

    Article  MathSciNet  MATH  Google Scholar 

  31. B. Jancewicz, Wielkosci skierowane w electrodynamice (in Polish). Directed Quantities in Electrodynamics. (University of Wroclaw Press: Wroclaw, 2000); an English version is under preparation.

    Google Scholar 

  32. G.R. Kalbfleisch, K.A. Milton, M.G. Strauss, L. Gamberg, E.H. Smith, and W. Luo, Improved experimental limits on the production of magnetic monopoles, Phys. Rev. Lett. 85 (2000) 5292–5295.

    Article  Google Scholar 

  33. F. Kottler, Maxwell’sche Gleichungen und Metrik, Sitzungsber. Akad. Wien Ha 131 (1922) 119–146.

    MATH  Google Scholar 

  34. A. Kovetz, Electromagnetic Theory (Oxford University Press: Oxford, 2000).

    MATH  Google Scholar 

  35. C. Lämmerzahl and M.P. Haugan, On the interpretation of Michelson—Morley experiments, Phys. Lett. A282 (2001) 223–229.

    Google Scholar 

  36. L.D. Landau and E.M. Lifshitz, The Classical Theory of Fields, Vol.2 of Course of Theoretical Physics, transl. from the Russian (Pergamon: Oxford, 1962).

    Google Scholar 

  37. H.A. Lorentz, The Theory of Electrons and its Applications to the Phenomena of Light and Radiant Heat. 2nd ed. (Teubner: Leipzig, 1916).

    Google Scholar 

  38. K. Meetz and W.L. Engl, Elektromagnetische Felder: Mathematische und physikalische Grundlagen, Anwendungen in Physik und Technik (Springer: Berlin, 1980).

    Google Scholar 

  39. G. Mie, Lehrbuch der Elektrizität und des Magnetismus, 2nd ed. (Enke: Stuttgart 1941).

    MATH  Google Scholar 

  40. E.W. Mielke ad R.P. Wallner, Mass and spin of double dual solutions in Poincaré gauge theory, Nuovo Cimento 101 (1988) 607–623, erratum B102 (1988) 555.

    Article  MathSciNet  Google Scholar 

  41. ] Yu.N. Obukhov, T. Fukui, and G.F. Rubilar, Wave propagation in linear electrodynamics, Phys. Rev. D62 (2000) 044050, 5 pages.

    Google Scholar 

  42. Yu.N. Obukhov and F.W. Hehl, Space-time metric from linear electrodynamics, Phys. Lett. B458 (1999) 466–470.

    MathSciNet  MATH  Google Scholar 

  43. S. Parrott, Relativistic Electrodynamics and Differential Geometry (Springer: New York, 1987).

    Book  MATH  Google Scholar 

  44. C. Piron, Électrodynamique et optique. Course given by C. Piron. Notes edited by E. Pittet (University of Geneva, 1975).

    Google Scholar 

  45. C. Piron and D.J. Moore, New aspects of field theory, Turk. J. Phys. 19 (1995) 202–216.

    Google Scholar 

  46. E.J. Post, Formal Structure of Electromagnetics: General Covariance and Electromagnetics (North Holland: Amsterdam, 1962, and Dover: Mineola, New York, 1997).

    Google Scholar 

  47. E.J. Post, The constitutive map and some of its ramifications, Annals of Physics (NY) 71 (1972) 497–518.

    Article  Google Scholar 

  48. E.J. Post, Kottler-Cartan-van Dantzig (KCD) and noninertial systems, Found. Phys. 9 (1979) 619–640.

    Article  Google Scholar 

  49. E.J. Post, Physical dimension and covariance, Found. Phys. 12 (1982) 169–195.

    Google Scholar 

  50. E.J. Post, Quantum Reprogramming: Ensembles and Single Systems: A Two-Tier Approach to Quantum Mechanics (Kluwer: Dordrecht, 1995).

    Google Scholar 

  51. R.A. Puntigam, C. Lämmerzahl and F.W. Hehl, Maxwell’s theory on a post-Riemannian spacetime and the equivalence principle, Class. Quantum Gray. 14 (1997) 1347–1356.

    Article  MATH  Google Scholar 

  52. G.F. Rubilar, Yu.N. Obukhov and F.W. Hehl, General covariant Fresnel equation and the emergence of the light cone structure in pre-metric electrodynamics, Int. J. Mod. Phys. D11 (2002) 1227–1242.

    MathSciNet  Google Scholar 

  53. M. Schönberg, Electromagnetism and gravitation, Rivista Brasileira de Fisica 1 (1971) 91–122.

    Google Scholar 

  54. J.A. Schouten, Ricci-Calculus, 2nd ed. (Springer: Berlin, 1954).

    MATH  Google Scholar 

  55. J.A. Schouten, Tensor Analysis for Physicists, 2nd ed. reprinted (Dover: Mineola, New York 1989).

    Google Scholar 

  56. E. Schrödinger, Space-Time Structure (Cambridge University Press: Cambridge, 1954).

    Google Scholar 

  57. W. Slebodziüski, Exterior Forms and Their Applications. Revised translation from the French (PWN—Polish Scientific Publishers: Warszawa, 1970).

    Google Scholar 

  58. A. Sommerfeld, Elektrodynamik. Vorlesungen über Theoretische Physik, Band 3 (Dieterich’sche Verlagsbuchhandlung: Wiesbaden, 1948). English translation: A. Sommerfeld, Electrodynamics, Vol. 3 of Lectures in Theoretical Physics (Academic Press: New York, 1952).

    Google Scholar 

  59. J. Stachel, The generally covariant form of Maxwell’s equations, in: J.C. Maxwell, the Sesquicentennial Symposium. M.S. Berger, ed. (Elsevier: Amsterdam, 1984) pp. 23–37.

    Google Scholar 

  60. W. Thirring, Classical Mathematical Physics: Dynamical Systems and Field Theories, 3rd ed. (Springer: New York, 1997).

    Google Scholar 

  61. R.A. Toupin, Elasticity and electro-magnetics, in: Non-Linear Continuum Theories, C.I.M.E. Conference, Bressanone, Italy 1965. C. Truesdell and G. Grioli coordinators, pp. 203–342

    Google Scholar 

  62. A. Trautman, Differential Geometry for Physicists, Stony Brook Lectures (Bibliopolis: Napoli, 1984).

    Google Scholar 

  63. C. Truesdell and R.A. Toupin, The classical field theories, in: Handbuch der Physik, Vol. III/1, S. Flügge ed. (Springer: Berlin, 1960) pp. 226–793.

    Google Scholar 

  64. D. van Dantzig, The fundamental equations of electromagnetism, independent of metrical geometry, Proc. Cambridge Phil. Soc. 30 (1934) 421–427.

    Article  Google Scholar 

  65. H. Weyl, Raum, Zeit, Materie, Vorlesungen über Allgemeine Relativitätstheorie, 8th ed. (Springer: Berlin, 1993). Engl. translation of the 4th ed.: Space-Time-Matter (Dover: New York, 1952).

    Google Scholar 

  66. E. Whittaker, A History of the Theories of Aether and Electricity. 2 volumes, reprinted (Humanities Press: New York, 1973).

    Google Scholar 

  67. M.R. Zirnbauer, Elektrodynamik. Tex-script July 1998 (Springer: Berlin, to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hehl, F.W., Obukhov, Y.N. (2003). Introduction. In: Foundations of Classical Electrodynamics. Progress in Mathematical Physics, vol 33. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0051-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0051-2_1

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6590-0

  • Online ISBN: 978-1-4612-0051-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics