Skip to main content

On the Endomorphism Algebra of the Steinberg Module

  • Chapter
Studies in Memory of Issai Schur

Part of the book series: Progress in Mathematics ((PM,volume 210))

  • 578 Accesses

Abstract

Let \( \bar{\mathfrak{g}} = {\mathfrak{g}_{0}} \otimes k((z)) \otimes k.c\) be an affine Kac–Moody Lie algebra over a field k of finite characteristic p and let \( St = \Delta ((p - 1)\rho ) \) be the Steinberg module. By contrast with the finite dimensional case, the Steinberg module is not irreducible [M3]. Indeed its endomorphism algebra E is a very large commutative algebra on which the group Г= Autk((Z)) acts. It is shown that E is Г-equivariantly isomorphic with the algebra of regular functions on the space of all \( \mathfrak{h}_0^* \)-valued rational one-forms Ω over Spec k((Z)) satisfying the following conditions:

  • has a simple pole with residue-

  • where is the Cartier operator

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Cartier, Questions de rationalité des diviseurs en géométrie algébriqueBull. Soc. Math. France86 (1958), 177–251.

    MathSciNet  MATH  Google Scholar 

  2. V. Drinfel’d and V. Sokolov, Lie algebras and equations of Korteweg-de Vries typeJ. Soy. Math.30 (1985), 1975–2036.

    Article  MATH  Google Scholar 

  3. B. Feigin and E. Frenkel, A family of representations of affine Lie algebrasRussian Math. Surveys43 (1988), 221–222.

    Article  MathSciNet  MATH  Google Scholar 

  4. B. Feigin and E. Frenkel, Affine Kac-Moody algebras and semi-infinite flag manifoldsComm. Math. Phys.128 (1990), 161–189.

    Article  MathSciNet  MATH  Google Scholar 

  5. B. Feigin and E. Frenkel, Affine Kac-Moody algebras at the critical level and Gel’fand-Dikil algebrasInt. J. Math. Phys.A7 (1992), 197–215.

    MathSciNet  MATH  Google Scholar 

  6. E. Frenkel, Affine Kac-Moody algebras at the critical level and Quantum Drin-feld-Sokolov reduction, Harvard Thesis, 1990.

    Google Scholar 

  7. I.M. Gel’fand and L.A. Dikii, Fractional powers of operators and Hamiltonian systemsFunctional Anal. Appl. 10(1976), 259–273.

    Article  Google Scholar 

  8. R. Goodman and N. Wallach, Higher-order Sugawara operators for affine Lie algebrasTrans. Amer. Math. Soc.315 (1989), 1–55.

    Article  MathSciNet  MATH  Google Scholar 

  9. W.J. Haboush, Central differential operators on split semisimple groups over fields of positive characteristic, Séminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, 32me anne (Paris, 1979), Lecture Notes in Math. 795 (1980), pp. 35–85.

    Article  MathSciNet  Google Scholar 

  10. T. Hayashi, Sugawara operators and Kac-Kazhdan conjectureInvent. Math.94 (1988), 13–52.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Hiss, Die adjungierten Darstellungen der Chevalley-GruppenArch. Math.42 (1984), 408–416.

    Article  MathSciNet  MATH  Google Scholar 

  12. G.M.D. Hogeweij, Almost-classical Lie algebras, I.Nederl. Akad. Wetensch. Indag. Math.44 (1982), 441–452.

    Article  MathSciNet  MATH  Google Scholar 

  13. G.M.D. Hogeweij, Almost-classical Lie algebras, II.Nederl. Akad. Wetensch. Indag. Math.44 (1982), 453–460.

    Article  MathSciNet  Google Scholar 

  14. N. JacobsonLie AlgebrasInterscience, New York, 1962.

    MATH  Google Scholar 

  15. V.G. KacInfinite Dimensional Lie AlgebrasBirkhäuser, Progress in Math. 44, 1983.

    Google Scholar 

  16. O. Mathieu, Formules de caractères pour les algèbres de Kac-Moody généralesAsté risque(1988), 159–160.

    MATH  Google Scholar 

  17. O. Mathieu, Construction d’un groupe de Kac-Moody et applicationsCompositio Math. 69(1989), 37–60.

    MathSciNet  MATH  Google Scholar 

  18. O. Mathieu, On some modular representations of affine Kac-Moody algebras at the critical levelCompositio Math. 102(1996), 305–312.

    MathSciNet  MATH  Google Scholar 

  19. J. TitsGroups and Group Functors Attached to Kac-Moody DataLecture Notes in Math.1111Springer-Verlag, 1985, pp. 193–223.

    Google Scholar 

  20. J. Tits, Groupes et Algèbres de Kac-Moody, Résuméde cours, Collège de France, 1982–1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mathieu, O. (2003). On the Endomorphism Algebra of the Steinberg Module. In: Joseph, A., Melnikov, A., Rentschler, R. (eds) Studies in Memory of Issai Schur. Progress in Mathematics, vol 210. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0045-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0045-1_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6587-0

  • Online ISBN: 978-1-4612-0045-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics