Skip to main content

Induced Representations of Affine Hecke Algebras and Canonical Bases of Quantum Groups

  • Chapter
Studies in Memory of Issai Schur

Part of the book series: Progress in Mathematics ((PM,volume 210))

Abstract

A criterion of irreducibility for induction products of evaluation modules of type A affine Hecke algebras is given. It is derived from multiplicative properties of the canonical basis of a quantum deformation of the Bernstein—Zelevinsky ring.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Akasaka and M. Kashiwara, Finite-dimensional representations of quantum affine algebrasPubl. Res. Inst. Math. Sci.33(1997), 839–867.

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Ariki, On the decomposition numbers of the Hecke algebra ofG n1mJ. Math. Kyoto Univ.36 (1996), 789–808.

    MathSciNet  MATH  Google Scholar 

  3. A. Berenstein and A. Zelevinsky String bases for quantum groups of typeAr Advances in Soviet Math.(Gelfand’s seminar), 16 (1993), 51–89.

    MathSciNet  Google Scholar 

  4. A. Berenstein and A. Zelevinsky, Canonical bases for the quantum group of type Arand piecewise-linear combinatoricsDuke Math. J.82 (1996), 473–502.

    Article  MathSciNet  MATH  Google Scholar 

  5. I. Cherednik, A new interpretation of Gel’fand—Tzetlin basesDuke Math. J.54 (1987), 563–577.

    Article  MathSciNet  MATH  Google Scholar 

  6. N. Chriss and V. GinzburgRepresentation Theory and Complex GeometryBirkhäuser, 1997.

    Google Scholar 

  7. V. Drinfeld, Degenerate affine Hecke algebras and YangiansFunct. Anal. Appl.20 (1986), 56–58.

    MathSciNet  Google Scholar 

  8. E. Date, M. Jimbo, A. Kuniba and T. Miwa, A quantum trace formula for R-matrices. InSelected Topics in Conformal Field Theory and Statistical MechanicsProceedings of the 8th Symposium on Theoretical Physics, Mt. Sorak, 1989 (H. S. Song, ed.), Kyohak Yunkusa, 1990, pp. 87–111.

    Google Scholar 

  9. W. FultonYoung TableauxL.M.S. Student Texts 35, Cambridge, 1997.

    Google Scholar 

  10. W. Fulton and A. Lascoux, A Pieri formula in the Grothendieck ring of a flag bundleDuke Math. J.76 (1994), 711–729.

    Article  MathSciNet  MATH  Google Scholar 

  11. V. Ginzburg, Geometric aspects of representation theory. InProceedings of ICMBerkeley, 1986, pp. 304–308.

    Google Scholar 

  12. M. Kashiwara, Crystalizing the q-analogue of universal enveloping algebrasCommun. Math. Phys.133 (1990), 249–260.

    Article  MathSciNet  MATH  Google Scholar 

  13. M. Kashiwara, On crystal bases of the q-analogue of universal enveloping algebrasDuke Math. J.63 (1991), 465–516.

    Article  MathSciNet  MATH  Google Scholar 

  14. M. Kashiwara, Global crystal bases of quantum groupsDuke Math. J.69 (1993), 455–485.

    Article  MathSciNet  MATH  Google Scholar 

  15. S. Kato, Irreducibility of principal series representations for Hecke algebras of affine typeJ. Fac. Sci. Univ. Tokyo28 (1981), 929–943.

    MATH  Google Scholar 

  16. N. Kitanine, J.-M. Maillet, and V. Terras, Form factors of the XXZ Heisenberg spin- Z finite chainNuclear Phys. B554 (1999), 647–678.

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Lascoux, B. Leclerc, and J.-Y. Thibon, Hecke algebras at roots of unity and crystal bases of quantum affine algebrasCommun. Math. Phys.181 (1996), 205–263.

    Article  MathSciNet  MATH  Google Scholar 

  18. A. Lascoux and M. P. Schützenberger, Keys and standard bases. InInvariant Theory and Tableaux(D. Stanton, ed.), IMA 19, Springer, 1990, pp. 125–144.

    Google Scholar 

  19. B. Leclerc and A. ZelevinskyQuasicommuting Families of Quantum Plücker CoordinatesAdvances in Math. Sciences (Kirillov’s seminar), AMS Translations 181 (1998), 85–108.

    MathSciNet  Google Scholar 

  20. B. Leclerc and J.-Y. Thibon, The Robinson-Schensted correspondence, crystal bases, and the quantum straightening atq =0Elect. J. Alg. Combinatorics3 (1996), R11.

    MathSciNet  Google Scholar 

  21. B. Leclerc, J.-Y. Thibon, and E. Vasserot, Zelevinsky’s involution at roots of unityJ. Reine Angew. Math.513 (1999), 33–51.

    MathSciNet  MATH  Google Scholar 

  22. G. Lusztig Canonical bases arising from quantized enveloping algebras, IJ. Amer. Math. Soc.3 (1990), 447–498.

    Article  MathSciNet  MATH  Google Scholar 

  23. G. Lusztig, Quivers, perverse sheaves and quantized enveloping algebras J. Amer. Math. Soc.4 (1991), 365–421.

    Article  MathSciNet  MATH  Google Scholar 

  24. J.-M. Maillet and V. Terras, On the quantum inverse scattering problemNu clear Phys. B 575(2000), 627–644.

    Article  MathSciNet  MATH  Google Scholar 

  25. C. Moeglin and J.-L. Waldspurger, Sur l’involution de ZelevinskiJ. Reine Angew. Math.372 (1986), 136–177.

    MathSciNet  MATH  Google Scholar 

  26. A. Molev, Irreducibility criterion for tensor products of Yangian evaluation modulesDuke Math. J.112 (2002), 307–341.

    Article  MathSciNet  MATH  Google Scholar 

  27. M. Nazarov and V. Tarasov, On irreducibility of tensor products of Yangian modulesInternat. Math. Res. Notices3 (1998), 125–150.

    Article  MathSciNet  Google Scholar 

  28. M. Nazarov and V. Tarasov, On irreducibility of tensor products of Yangian modules associated with skew Young diagramsDuke Math. J.112 (2002), 343–378.

    Article  MathSciNet  MATH  Google Scholar 

  29. M. Reineke, Multiplicative properties of dual canonical bases of quantum groupsJ. Algebra211 (1999), 134–149.

    Article  MathSciNet  MATH  Google Scholar 

  30. J. D. Rogawski, On modules over the Hecke algebra of a p-adic groupInvent. Math.79 (1985), 443–465.

    MathSciNet  MATH  Google Scholar 

  31. J. D. Rogawski, Representations ofGL(n)over a p-adic field with an Iwahori-fixed vectorIsrael Math. J.54 (1986), 242–256.

    Article  MathSciNet  MATH  Google Scholar 

  32. T. Suzuki, Rogawski’s conjecture on the Jantzen filtration for the degenerate affine Hecke algebra of type AElec. J. Represent. Theory2 (1998), 393–409.

    Article  MATH  Google Scholar 

  33. E. Taft and J. Towber, Quantum deformation of flag schemes and Grassman schemes I - A q-deformation of the shape algebra forGL(n) J. of Algebra142 (1991), 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  34. M. Varagnolo, Quiver varieties and YangiansLett. Math. Phys.53 (2000), 273–283.

    Article  MathSciNet  MATH  Google Scholar 

  35. J.-L. Waldspurger, Algèbres de Hecke et induites de représentations cuspi-dales pourGL(N) J. reine Angew. Math.370 (1986), 127–191.

    MathSciNet  MATH  Google Scholar 

  36. A. Zelevinsky, A p-adic analog of the Kazhdan—Lusztig conjectureFunct. Anal. Appl.15 (1981), 83–92.

    Article  Google Scholar 

  37. A. Zelevinsky, Two remarks on graded nilpotent classesRussian Math. Sur- veys40 (1985), 249–250.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Leclerc, B., Nazarov, M., Thibon, JY. (2003). Induced Representations of Affine Hecke Algebras and Canonical Bases of Quantum Groups. In: Joseph, A., Melnikov, A., Rentschler, R. (eds) Studies in Memory of Issai Schur. Progress in Mathematics, vol 210. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0045-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0045-1_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6587-0

  • Online ISBN: 978-1-4612-0045-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics