Skip to main content

Frobenius-Schur Functions

  • Chapter
Studies in Memory of Issai Schur

Part of the book series: Progress in Mathematics ((PM,volume 210))

Abstract

We introduce and study a new basis in the algebra of symmetric functions. The elements of this basis are called the Frobenius—Schur functions (FS- functions, for short).

Our main motivation for studying the FS-functions is the fact that they enter a formula expressing the combinatorial dimension of a skew Young diagram in terms of the Frobenius coordinates. This formula plays a key role in the asymptotic character theory of the symmetric groups. The (FS-functions are inhomogeneous, and their top homogeneous components coincide with the conventional Schur functions (S-functions, for short). The (FS-functions are best described in the super realization of the algebra of symmetric functions. As supersymmetric functions, the(FS-functions can be characterized as a solution to an interpolation problem.

Our main result is a simple determinantal formula for the transition coefficients between theFS-and S-functions. We also establish theFSanalogs for a number of basic facts concerning the S-functions: the Jacobi—Trudi formula together with its dual form, the combinatorial formula (expression in terms of tableaux), the Giambelli formula and the Sergeev—Pragacz formula.

All these results hold for a large family of bases interpolating between theFS-functions and the ordinary S-functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Berele and A. Regev, Hook Young diagrams with applications to combinatorics and to representations of Lie superalgebrasAdv. Math.64 (1987), 118–175.

    Article  MathSciNet  MATH  Google Scholar 

  2. L. C. Biedenharn and J. D. Louck, A new class of symmetric polynomials defined in terms of tableauxAdvances in Appl. Math. 10(1989), 396–438.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. C. Biedenharn and J. D. Louck, Inhomogeneous basis set of symmetric polynomials defined by tableauxProc. Nat. Acad. Sci. U.S.A.87 (1990), 1441–1445.

    Google Scholar 

  4. A. Borodin and G. Olshanski, Harmonic functions on multiplicative graphs and interpolation polynomialsElectronic J. Combinatorics7 (2000), #R28; math/9912124.

    MathSciNet  Google Scholar 

  5. W. Y. C. Chen and J. D. Louck, The factorial Schur functionJ. Math. Phys.34 (1993), 4144–4160.

    Article  MathSciNet  MATH  Google Scholar 

  6. I. Gessel and G. Viennot, Binomial determinants, paths, and hook length formulaAdvances in Math.(1985), 300–321.

    Google Scholar 

  7. I. Goulden and C. Greene, A new tableau representation for supersymmetric Schur functionsJ. Algebra170 (1994), 687–703.

    Article  MathSciNet  MATH  Google Scholar 

  8. V. N. Ivanov, Dimension of skew shifted Young diagrams and projective repre-sentations of the infinite symmetric group. InRepresentation Theory Dynamical Systems Combinatorial and Algorithmical Methods II (A. M. Vershik, ed.), Zapiski Nauchnykh Seminarov POMI 240 Nauka, St. Petersburg, 1997, pp. 115–135 (Russian); English translation:J. Math. Sci.96, No. 5 (1999), 3517–3530.

    Google Scholar 

  9. V. N. Ivanov, Combinatorial formula for factorial Schur Q-functions. InRepre- sentation Theory Dynamical Systems Combinatorial and Algorithmical MethodsIII (A. M. Vershik, ed.), Zapiski Nauchnykh Seminarov POMI 256 Nauka, St. Petersburg, 1999, pp. 73–94 (Russian); English translation:J. Math. Sci. 107, No. 5 (2001), 4195–4211.

    Google Scholar 

  10. S. Kerov and G. Olshanski, Polynomial functions on the set of Young diagramsComptes Rendus Acad. Sci. Paris Sér. I319 (1994), 121–126.

    MathSciNet  MATH  Google Scholar 

  11. S. Kerov, A. Okounkov, and G. Olshanski, The boundary of Young graph with Jack edge multiplicitiesIntern. Math. Res. NoticesNo. 4 (1998), 173–199.

    Article  MathSciNet  Google Scholar 

  12. S. Kerov and A. Vershik, The characters of the infinite symmetric group and probability properties of the Robinson—Schensted—Knuth algorithmSIAM J. Alg. Discr. Meth.7 (1986), 116–124.

    Article  MathSciNet  MATH  Google Scholar 

  13. S. Kerov and A. Vershik The Grothendieck group of the infinite symmetric group and symmetric functions with the elements of the Ko-functor theory of AF-algebras. InRepresentation of Lie Groups and Related TopicsAdv. Stud. Contemp. Math. 7 (A. M. VershikandD. P. Zhelobenko, eds.), Gordon and Breach, 1990, pp. 36–114.

    Google Scholar 

  14. A. Lascoux, Puissances extérieurs, déterminants et cycles de SchubertBull. Soc. Math. France102 (1974), 161–179.

    MathSciNet  MATH  Google Scholar 

  15. A. Lascoux, Notes on interpolation in one and several variables, Preprint, available viahttp://phalanstere.univ-mlv.fr/-al/MAIN/publications.html

  16. I. G. MacdonaldSymmetric Functions and Hall Polynomials2nd edition, University Press, 1995.

    Google Scholar 

  17. I. G. Macdonald, Schur functions: Theme and variations, Publ. I.R.M.A. Strasbourg, 498/S-27, Actes 28ième Séminaire Lotharingien (1992), 5–39.

    Google Scholar 

  18. I. G. MacdonaldNotes on Schubert PolynomialsPubl. LACIM, Universitédu Quebec, Montréal, 1991.

    Google Scholar 

  19. A. Molev, Factorial supersymmetric Schur functions and super Capelli identities. InKirillov’s Seminar on Representation Theory(G. Olshanski, ed.), American Mathematical Society Translations (2), Vol. 181, Amer. Math. Soc. Providence, RI, 1997, pp. 109–137.

    Google Scholar 

  20. A. I. Molev and B. E. Sagan, A Littlewood—Richardson rule for factorial Schur functionsTrans. Amer. Math. Soc.351 (1999), 4429–4443.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Okounkov, Quantum immanants and higher Capelli identitiesTransformation Groups 1(1996), 99–126.

    Article  MathSciNet  MATH  Google Scholar 

  22. A. Okounkov, On Newton interpolation of symmetric functions: A characterization of interpolation Macdonald polynomialsAdv. Appl. Math.20 (1998), 395–428.

    Article  MathSciNet  MATH  Google Scholar 

  23. A. Okounkov and G. Olshanski, Shifted Schur functionsAlgebra i Analiz9,No. 2 (1997), 73–146 (Russian): English translation:St. Petersburg Math. J.9 (1998), 239–300.

    MathSciNet  Google Scholar 

  24. A. Okounkov and G. Olshanski, Shifted Jack polynomials, binomial formula, and applicationsMath. Research Letters4 (1997), 69–78.

    MathSciNet  MATH  Google Scholar 

  25. G. Olshanski, Point processes and the infinite symmetric group. Part I: The general formalism and the density function, math/9804086.

    Google Scholar 

  26. P. Pragacz, Algebro-geometric applications of SchurS-and Q-polynomials. InTopics in Invariant TheorySeminaire d’Algèbre Paul Dubreil et Marie-Paule Malliavin, Lecture Notes in Math. 1478,Springer—Verlag, New York, Berlin, 1991, pp. 130–191.

    Google Scholar 

  27. P. Pragacz and A. Thorup, On a Jacobi—Trudi identity for supersymmetric polynomialsAdv. Math.(1992), 8–17.

    Google Scholar 

  28. A. Regev and T. Seeman, Shuffle invariance of the super-RSK algorithmAdvances in Appl. Math.to appear, math/0103206.

    Google Scholar 

  29. B. E. SaganThe Symmetric Group. Representations Combinatorial Algo-rithms and Symmetric FunctionsBrooks/Cole Publ. Co., Pacific Grove, CA, 1991.

    Google Scholar 

  30. J. R. Stembridge, A characterization of supersymmetric polynomialsJ. Alge-bra95, (1985), 439–444.

    Article  MathSciNet  MATH  Google Scholar 

  31. E. Thoma, Die unzerlegbaren, positive-definiten Klassenfunktionen der abzähl bar unendlichen, symmetrischen GruppeMath. Zeitschr85 (1964), 40–61.

    Article  MathSciNet  MATH  Google Scholar 

  32. A. M. Vershik and S. V. Kerov, Asymptotic theory of characters of the symmetric groupFunct. Anal. Appl.15,No. 4 (1981), 246–255.

    Article  MathSciNet  Google Scholar 

  33. A. J. Wassermann, Automorphic actions of compact groups on operator alge-bras, Thesis, University of Pennsylvania, 1981.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Olshanski, G., Regev, A., Vershik, A., Ivanov, V. (2003). Frobenius-Schur Functions. In: Joseph, A., Melnikov, A., Rentschler, R. (eds) Studies in Memory of Issai Schur. Progress in Mathematics, vol 210. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0045-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0045-1_10

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6587-0

  • Online ISBN: 978-1-4612-0045-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics