Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

Abstract

This chapter presents some new results in the areas in which Professor Anthony N. Michel has been a world renowned researcher. Properties of time are summarized. These properties are linked to the features of physical variables expressed by the Physical Continuity and Uniqueness Principle and are important for modeling physical systems and for studies of their qualitative properties. The complete transfer function matrix is defined for multi-input multi-output time-invariant linear systems. This matrix is crucial for zero-pole cancellation, system minimal realization, and synthesis of stabilizing, tracking, and/or optimal control for the systems. A new Lyapunov methodology for nonlinear systems, called the “consistent Lyapunov methodology,” enables us to establish the necessary and sufficient conditions for (1) asymptotic stability, (2) direct construction of a Lyapunov function for a given nonlinear dynamical system, and (3) a set to be the exact domain of asymptotic stability. They are not expressed in terms of the existence of a Lyapunov function. The extended concepts of definite vector functions and of vector Lyapunov functions open new directions for studies of complex nonlinear dynamical systems and for their control synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. J. Antsaklis and A. N. Michel Linear Systems McGraw-Hill, New York, 1997.

    Google Scholar 

  2. R. Bellman, “Vector Lyapunov functions,” SIAM J. Control Ser. A, vol. 1, no. 1, pp. 32–34, 1962.

    MATH  Google Scholar 

  3. N. P. Bhatia and G. P. Szegö Dynamical Systems Stability Theory and Applications Springer-Verlag, Berlin, 1967.

    MATH  Google Scholar 

  4. A. Einstein La théorie de la relativité Gauthier-Villars et Cie, Paris, 1921.

    Google Scholar 

  5. A. Einstein The Meaning of Relativity Methuen, London, 1950.

    MATH  Google Scholar 

  6. A. Einstein La théorie de la relativité restreinte et générale Gauthier-Villars et Cie, Paris, 1954.

    MATH  Google Scholar 

  7. A. Einstein Relativity Methuen, London, 1960.

    Google Scholar 

  8. D. L. Gray and A. N. Michel, “A training algorithm for binary feedforward neural networks,” IEEE Trans. Neural Networks vol. 3, no. 2, pp. 176–194, 1992.

    Article  Google Scholar 

  9. Ly.T. Grouyitch and G. Dauphin-Tanguy, “Stabilité énergétique exponentielle,” Actes de la Conférence Internationale Francophone d’Automatique pp. 75–80, Lille, France, July 2000.

    Google Scholar 

  10. Lj. T. Grujić, “Novel development of Lyapunov stability of motion,” Int. J. Control vol. 22, no. 4, pp. 525–549, 1975.

    Article  MATH  Google Scholar 

  11. Li. T. Grujić, “Stability domains of general and large-scale stationary systems,” in Applied Modelling and Simulation of Technological Systems P. Borne and S. G. Tzafestas, Eds., pp. 317–327, Elsevier (North Holland), Amsterdam, 1987.

    Google Scholar 

  12. Lj. T. Grujić, “On large-scale systems stability,” in Computing and Computers for Control Systems P. Borne et al., Eds., pp. 201–206, Baltzer Scientific Publishing, Bussum, the Netherlands, 1989.

    Google Scholar 

  13. Li. T. Grujić Dynamique Linéaire Lecture Notes, Ecole Nationale d’Ingénieurs de Belfort, Belfort, France, 1994–1998.

    Google Scholar 

  14. Lj. T. Grujić “New Lyapunov methodology: Absolute stability of LuriePostnykov systems,” Preprints of the IFAC-IFIP-IMACS Conference on Control of Industrial Systems vol. 1, pp. 533–538, Belfort, France, May 1997.

    Google Scholar 

  15. Lj. T. Grujić“Novel Lyapunov stability methodology for nonlinear systems: Complete solutions,” Nonlinear Analysis Theory Methods & Applications vol. 30, no. 8, pp. 5315–5325,1997.

    MathSciNet  MATH  Google Scholar 

  16. Li. T. Grujić, “Exponential quality of time-varying dynamical systems: Stability and tracking,” in Advances in Nonlinear Dynamics Stability and Control: Theory Methods and Applications S. Sivasundaram and A. A. Martynyuk, Eds., vol. 5, pp. 51–61, Gordon and Breach, Amsterdam, 1997.

    Google Scholar 

  17. Li. T. Grujić, “New approach to asymptotic stability: Time-varying nonlinear systems,” Int. J. Math. and Math. Sci. vol. 20, no. 2, pp. 347–366, 1997.

    Article  MATH  Google Scholar 

  18. Lj. T. Grujić, A. A. Martynyuk, and M. Ribbens-Pavella Large Scale Systems Stability under Structural and Singular Perturbations Springer-Verlag, Berlin, 1987.

    Book  MATH  Google Scholar 

  19. Li. T. Grujić and A. N. Michel, “Exponential stability and trajectory bounds of neural networks under structural variations,” IEEE Trans. Circuits and Systems vol. 38, no. 10, pp. 1182–1192, Oct. 1991.

    Article  MATH  Google Scholar 

  20. Lj. T. Grujić and A. N. Michel, “Modelling and qualitative analysis of discrete-time neural networks under pure structural variations,” in Mathematics of the Analysis and Design of Process Control P. Borne, S. G. Tzafestas, and N. E. Radhy, Eds., pp. 559–566, Elsevier (North-Holland), Amsterdam, 1992.

    Google Scholar 

  21. Ly. T. Gruyitch Continuous Time Control Systems Lecture notes for the course DNEL4CN2: Control Systems, Department of Electrical Engineering, University of Natal, Durban, South Africa, 1993.

    Google Scholar 

  22. Ly. T. Gruyitch, “Consistent Lyapunov methodology for time-invariant nonlinear systems,” Avtomatika i Telemehanika no. 12, pp. 35–73, Dec. 1997 (in Russian).

    MathSciNet  Google Scholar 

  23. Ly. T. Gruyitch, “Time, relativity and physical principle: Generalizations and applications,” Proc. V International Conference: Physical Interpretations of Relativity Theory pp. 134–170, London, Sept. 1998.

    Google Scholar 

  24. Ly. T. Gruyitch, “Physical continuity and uniqueness principle. Exponential natural tracking control,” Neural Parallel & Sci. Comput. vol. 6, pp. 143–170, 1998.

    MathSciNet  MATH  Google Scholar 

  25. Ly. T. Gruyitch Conduite des Systèmes Lecture Notes, University of Technology Belfort-Montbeliard, Belfort, 2000, 2001.

    Google Scholar 

  26. Ly. T. Gruyitch, “Consistent Lyapunov methodology, time-varying nonlinear systems and sets:’ Nonlinear Analysis vol. 39, pp. 413–446,2000.

    Article  MathSciNet  MATH  Google Scholar 

  27. Ly. T. Gruyitch, “Gaussian generalisations of the relativity theory fundaments with applications,” Preprints of the VI International Conference: Physical Interpretations of Relativity Theory pp. 125–136, London, Sept. 2000.

    Google Scholar 

  28. Ly. T. Gruyitch, “Systems approach to the relativity theory fundaments,” Nonlinear Analysis vol. 47, pp. 37–48,2001.

    Article  MathSciNet  MATH  Google Scholar 

  29. Ly. T. Gruyitch, “Time and uniform relativity theory fundaments,” Problems of Nonlinear Analysis in Engineering Systems vol. 7, no. 2, pp. 1–29,2001.

    Google Scholar 

  30. Ly. T. Gruyitch, “Consistent Lyapunov methodology: Non-differentiable nonlinear systems,” Nonlinear Dynamics and Systems Theory vol. 1, no. 1, pp. 1–22,2001.

    MathSciNet  MATH  Google Scholar 

  31. Ly. T. Gruyitch Contrôle Commande des Processus Industriels Lecture Notes, University of Technology Belfort-Montbeliard, Belfort, 2002.

    Google Scholar 

  32. Ly. T. Gruyitch and J. Dauphin-Tanguy, “Strict monotonous asymptotic energetic stability. Part I: Theory,” Pro. 14th Triennial World Congress vol. D, pp. 437–442, Beijing, P. R. China, 1999.

    Google Scholar 

  33. Ly. T. Gruyitch, J.-P. Richard, P. Borne and J.-C. Gentina Stability Domains Taylor and Francis, London, in press.

    Google Scholar 

  34. W. Hahn Stability of Motion Springer-Verlag, Berlin, 1967.

    MATH  Google Scholar 

  35. N. N. Krasovskii Stability of Motion Stanford University Press, Stanford, CA, 1963.

    MATH  Google Scholar 

  36. J. H. Li, A. N. Michel, and W. Porod, “Qualitative analysis and synthesis of a class of neural networks,” IEEE Trans. Circuits and Systems vol. 35, no. 8, pp. 976–986, Aug. 1988.

    Article  MathSciNet  MATH  Google Scholar 

  37. J. H. Li, A. N. Michel, and W. Porod, `Analysis and synthesis of a class of neural networks: Variable structure systems with infinite gain,“ IEEE Trans. Circuits Syst. vol. 36, no. 5, pp. 713–731, May 1989.

    Article  MathSciNet  MATH  Google Scholar 

  38. J. H. Li, A. N. Michel, and W. Porod, “Analysis and synthesis of a class of neural networks: Linear systems operating on a closed hypercube,” IEEE Trans. Circuits Syst. vol. 36, no. 11, pp. 1405–1422, Nov. 1989.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Liu and A. N. Michel, “Asymptotic stability of discrete-time systems with saturation nonlinearities with applications to digital filters,” IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications vol. 39, no. 10, pp. 798–807, Oct. 1992.

    Article  MATH  Google Scholar 

  40. D. Liu and A. N. Michel, “Null controllability of systems with control constraints and state saturation,” Systems and Control Letters vol. 20, pp. 131–139, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Liu and A. N. Michel, “Stability analysis of state-space realizations for two-dimensional filters with overflow nonlinearities,” IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications vol. 41, no. 2, pp. 127–137, Feb. 1994.

    Article  MathSciNet  MATH  Google Scholar 

  42. A. M. Lyapunov The General Problem of the Stability of Motion Kharkov Mathematical Society, Kharkov, 1892, published in Academician A. M. Lyapunov. Collected Works. vol. II (in Russian), Academy of Sciences of USSR, Moscow, pp. 5–263,1956. English translation: Int. J. Control vol. 55, pp. 531–773, 1992.

    Google Scholar 

  43. V. M. Matrosov, “To the theory of stability of motion,” Prikl. Math. Mekh. vol. 25, no. 5, pp. 885–895, 1962 (in Russian).

    Google Scholar 

  44. V. M. Matrosov Vector Lyapunov function method: Analysis of dynamical properties of nonlinear systems FIZMATLIT, Moscow, 2001 (in Russian).

    Google Scholar 

  45. V. I. Matyukhin, “Strong stability of motions of mechanical systems,” Automation and Remote Control vol. 57, no. 1, pp. 28–44, 1996.

    MathSciNet  MATH  Google Scholar 

  46. A. N. Michel, “On the bounds of the trajectories of differential systems,” Int. J. Control vol. 10, no. 5, pp. 593–600, 1969.

    Article  MATH  Google Scholar 

  47. A. N. Michel, “Stability, transient behavior and the trajectories bounds of interconnected systems,” Int. J. Control vol. 11, no. 4, pp. 703–715,1970.

    Article  Google Scholar 

  48. A. N. Michel, “Qualitative analysis of simple and interconnected systems: Stability, boundedness, and trajectory behavior,” IEEE Trans. Circuit Theory vol. CT-17, no. 3, pp. 292–301, 1970.

    Article  Google Scholar 

  49. A. N. Michel and J. A. Farrell, “Associative memories via artificial neural networks,” IEEE Control Systems Magazine vol. 10, no. 3, pp. 6–17, Apr. 1990.

    Article  Google Scholar 

  50. A. N. Michel, J. A. Farrell, and W. Porod, “Qualitative analysis of neural networks,” IEEE Trans. Circuits and Systems vol. 36, no. 2, pp. 229–243, 1989.

    Article  MathSciNet  MATH  Google Scholar 

  51. A. N. Michel and Lj. T. Grujie, “Modelling and qualitative analysis of continuous-time neural networks under pure structural variations,” in Mathematics of the Analysis and Design of Process Control P. Borne, S. G. Tzafestas and N. E. Radhy, Eds., pp. 549–558, Elsevier (North-Holland), Amsterdam, 1992.

    Google Scholar 

  52. A. N. Michel and L. Hou, “Modeling and qualitative theory for general hybrid dynamical and control systems,” Preprints of the IFAC-IFIP-IMACS Conference on Control of Industrial Systems vol. 1, pp. 173–183, Belfort, France, May 1997.

    Google Scholar 

  53. A. N. Michel, D. Liu, and K. Wang, “Stability analysis of a class of systems with parameter uncertainties and with state saturation nonlinearities,” Int. J. Robust and Nonlinear Control vol. 5, pp. 505–519, 1995.

    Article  MathSciNet  MATH  Google Scholar 

  54. A. N. Michel and R. K. Miller Qualitative Analysis of Large-Scale Dynamical Systems Academic Press, New York, 1977.

    MATH  Google Scholar 

  55. A. N. Michel, R. K. Miller, and B. H. Nam, “Stability analysis of interconnected systems using computer generated Lyapunov functions,” IEEE Trans. Circuits and Systems vol. CAS-29, no. 7, pp. 431–440, 1982.

    Article  MathSciNet  Google Scholar 

  56. A. N. Michel, B. H. Nam, and V. Vittal, “Computer generated Lyapunov functions for interconnected systems: Improved results with application to power systems,” IEEE Trans. Circuits Syst. vol. CAS-31, no. 2, pp. 189–198, 1984.

    Article  MathSciNet  Google Scholar 

  57. A. N. Michel and D. W. Porter, “Practical stability and finite-time stability of discontinuous systems,” IEEE Trans. Circuit Theory vol. CT-19, no. 2, pp. 123–129, 1972.

    Article  MathSciNet  Google Scholar 

  58. A. N. Michel, N. R. Sarabudla, and R. K. Miller, “Stability analysis of complex dynamical systems,” Circuits Systems Signal Processing vol. 1, no. 2, pp. 171–202,1982.

    MathSciNet  MATH  Google Scholar 

  59. A. N. Michel and K. Wang, “Robust stability: Perturbed systems with perturbed equilibria,” Systems and Control Letters vol. 21, pp. 155–162, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  60. A. N. Michel and K. Wang Qualitative Theory of Dynamical Systems: The Role of Stability Preserving Mappings Marcel Dekker, New York, 1994.

    MATH  Google Scholar 

  61. R. K. Miller and A. N. Michel Ordinary Differential Equations Academic Press, New York, 1982.

    MATH  Google Scholar 

  62. I. Newton Mathematical Principles of Natural Philosophy—Book I. The Motion of Bodies William Benton, Publisher, Encyclopedia Britannica, Chicago, 1952.

    Google Scholar 

  63. K. M. Passino, A. N. Michel, and P. Antsaklis, “Lyapunov stability of a class of discrete-event systems,” IEEE Trans. Automatic Control vol. 39, no. 2, pp. 269–279, Feb. 1994.

    Article  MathSciNet  MATH  Google Scholar 

  64. M. S. Radenkovic and A. N. Michel, “Robust adaptive systems and self stabilization,” IEEE Trans. Automatic Control vol. 37, no. 9, pp. 1355–1369, Sept. 1992.

    Article  MathSciNet  MATH  Google Scholar 

  65. M. Radenkovic and A. N. Michel, “Verification of the self-stabilization mechanism in robust stochastic adaptive control using Lyapunov function arguments,” SIAM J. Control Optim. vol. 30, no. 6, pp. 1270–1294, Nov. 1992.

    Article  MathSciNet  MATH  Google Scholar 

  66. M. Radenkovic and A. N. Michel, “Stochastic adaptive control of nonminimum phase systems in the presence of unmodelled dynamics,” SIAM J. Control Op-tim. vol. 14, no. 3, pp. 317–349,1995.

    MathSciNet  MATH  Google Scholar 

  67. J. Si and A. N. Michel, “Analysis and synthesis of a class of discrete-time neural networks with multilevel threshold neurons,” IEEE Trans. Neural Networks vol. 6, no. 1, pp. 105–116, 1995.

    Article  Google Scholar 

  68. D. D. Siljak Large-Scale Dynamic Systems: Stability and Structure North-Holland, New York, 1978.

    MATH  Google Scholar 

  69. K. Wang and A. N. Michel, “Qualitative analysis of dynamical systems determined by differential inequalities with applications to robust stability:’ IEEE Trans. Circuits Syst.—I: Fundamental Theory and Applications vol. 41, no. 2, pp. 377–386, May 1994.

    Article  MathSciNet  MATH  Google Scholar 

  70. K. Wang and A. N. Michel, “On the stability of nonlinear time-varying systems,” IEEE Trans. Circuits Syst.—I: Fundamental Theory and Applications vol. 43, no. 7, pp. 517–531, July 1996.

    Article  MathSciNet  Google Scholar 

  71. K. Wang and A. N. Michel, “Stability analysis of differential inclusions in Banach space with applications to nonlinear systems with time delays,” IEEE Trans. Circuits Syst.—I: Fundamental Theory and Applications vol. 43, no. 8, pp. 617–626, Aug. 1996.

    Article  MathSciNet  Google Scholar 

  72. H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems,” Proc. 34th IEEE Conf Decision and Control pp. 2670–2684, New Orleans, LA, Dec. 1995.

    Google Scholar 

  73. T. Yoshizawa Stability Theory by Liapunov’s Second Method The Mathematical Society of Japan, Tokyo, 1966.

    Google Scholar 

  74. V. I. Zubov Methods of A. M. Liapunov and Their Applications Noordhoff, Groningen, 1964.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gruyitch, L.T. (2003). Time, Systems, and Control:Qualitative Properties and Methods. In: Liu, D., Antsaklis, P.J. (eds) Stability and Control of Dynamical Systems with Applications. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0037-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0037-6_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6583-2

  • Online ISBN: 978-1-4612-0037-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics