Advertisement

(Control, Output) Synthesis: Algebraic Paradigms

  • Michael K. Sain
  • Bostwick F. Wyman
Part of the Control Engineering book series (CONTRENGIN)

Abstract

Under broad assumptions, it is known that there is in general no “separation principle” to guarantee optimality of a division between control law design and filtering of plant uncertainty. It is possible, however, to develop parameterizations of nominal (control, output) responses and to examine their capabilities in the feedback situation.

Keywords

Vector Space Zero Module Output Feedback Model Match Coprime Factorization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G. Zames, “Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate inverses,” IEEE Trans. Automatic Control, vol. AC-26, no. 2, pp. 301–320, Apr. 1981.MathSciNetCrossRefGoogle Scholar
  2. [2]
    M. R. Aaron, “Synthesis of feedback control systems by means of pole and zero location of the closed loop function,” AIEE Trans., vol. 70, Part II, pp. 1439–1445, 1951.Google Scholar
  3. [3]
    J. G. Truxal, Automatic Feedback Control System Synthesis, McGraw-Hill, New York, 1955.Google Scholar
  4. [4]
    J. R. Ragazzini and G. F. Franklin, Sampled-Data Control Systems, McGraw-Hill, New York, 1958.MATHGoogle Scholar
  5. [5]
    G. F. Franklin and J. D. Powell, Digital Control of Dynamic Systems, Addison-Wesley, Reading, MA, 1980.Google Scholar
  6. [6]
    G. C. Newton, Jr., L. A. Gould, and J. F. Kaiser, Analytical Design of Linear Feedback Controls, Wiley, New York, 1957.Google Scholar
  7. [7]
    H. Freeman, “A synthesis method for multipole control systems,” AIEE Trans. Applications and Industry, vol. 76, Part II, pp. 28–31, Mar. 1957.Google Scholar
  8. [8]
    R. J. Kavanagh, “Noninteracting controls in linear multivariable systems,” AIEE Trans. Applications and Industry, vol. 76, Part II, pp. 95–99, May 1957.Google Scholar
  9. [9]
    H. Freeman, “Stability and physical realizability considerations in the synthesis of multipole control systems,” AIEE Trans. Applications and Industry, vol. 77, Part II, pp. 1–5, Mar. 1958.MathSciNetGoogle Scholar
  10. [10]
    R. J. Kavanagh, “Multivariable control system synthesis,” AIEE Trans. Applications and Industry, vol. 77, Part II, pp. 425–429, Nov. 1958.Google Scholar
  11. [11]
    A. S. Morse, “Structure and design of linear model following systems,” IEEE Trans. Automatic Control, vol. 18, no. 4, pp. 346–353, Aug. 1973.MathSciNetMATHCrossRefGoogle Scholar
  12. [12]
    S.-H. Wang and E. J. Davison, “A minimization algorithm for the design of linear multivariable systems,” IEEE Trans. Automatic Control, vol. 18, pp. 220–225, 1973.MathSciNetMATHCrossRefGoogle Scholar
  13. [13]
    G. D. Forney, “Minimal bases of rational vector spaces, with applications to multivariable linear systems,” SIAM J. Control, vol. 13, pp. 493–520, 1975.MathSciNetMATHCrossRefGoogle Scholar
  14. [14]
    M. K. Sain, “A free-modular algorithm for minimal design of linear multivariable systems,” Proc. Sixth IFAC World Congress, Part IB, Section 9.1, Aug. 1975.Google Scholar
  15. [15]
    W. A. Wolovich, P. J. Antsaklis, and H. E. Elliott, “On the stability of solutions to minimal and nonminimal design problems,” IEEE Trans. Automatic Control, vol. 22, no. 1, pp. 88–94, Feb. 1977.MathSciNetMATHCrossRefGoogle Scholar
  16. [16]
    B. D. O. Anderson and N. T. Hung, “Multivariable design problem reduction to scalar design problems,” in Alternatives for Linear Multivariable Control, M. K. Sain, J. L. Peczkowski, and J. L. Melsa, Eds., pp. 88–95, National Engineering Consortium, Chicago, IL, 1978.Google Scholar
  17. [17]
    W. A. Wolovich, Linear Multivariable Systems, Springer-Verlag, New York, 1974, pp. 250 ff.MATHCrossRefGoogle Scholar
  18. [18]
    A. S. Morse, System Invariants under Feedback and Cascade Control, Lecture Notes in Economics and Mathematical Systems, vol. 131, Springer-Verlag, New York, 1975.Google Scholar
  19. [19]
    C. A. Desoer and M. J. Chen, “Design of multivariable feedback systems with stable plant,” IEEE Trans. Automatic Control, vol. AC-26, no. 2, pp. 408–415, Apr. 1981.MathSciNetCrossRefGoogle Scholar
  20. [20]
    C. A. Desoer, R.-W. Liu, J. Murray, and R. Saeks, “Feedback system design: The fractional representation approach to analysis and synthesis,” IEEE Trans. Automatic Control, vol. AC-25, no. 3, pp. 399–412, June 1980.MathSciNetCrossRefGoogle Scholar
  21. [21]
    G. Bengtsson, “Feedback realizations in linear multivariable systems,” IEEE Trans. Automatic Control, vol. AC-22, no. 4, pp. 576–585, Aug. 1977.MathSciNetCrossRefGoogle Scholar
  22. [22]
    L. Pernebo, “An algebraic theory for the design of controllers for linear multivariable systems-Part I, II,” IEEE Trans. Automatic Control, vol. 26, no. 1, pp. 171–194, Feb. 1981.MathSciNetMATHCrossRefGoogle Scholar
  23. [23]
    J. L. Peczkowski and M. K. Sain, “Linear multivariable synthesis with transfer functions,” in Alternatives for Linear Multivariable Control, M. K. Sain, J. L. Peczkowski, and J. L. Melsa, Eds, pp. 71–87, National Engineering Consortium, Chicago, IL, 1978Google Scholar
  24. [24]
    J. L. Peczkowski, M. K. Sain, and R. J. Leake, “Multivariable synthesis with inverses,” Proc. Joint Automatic Control Conference, pp. 375–380, 1979.Google Scholar
  25. [25]
    J. L. Peczkowski, “Multivariable synthesis with transfer functions,” Proc. Propulsion Controls Symposium, pp. 111–128, May 1979.Google Scholar
  26. [26]
    R. J. Leake, J. L. Peczkowski, and M. K. Sain, “Step trackable linear multivariable plants,” Int. J. Control, vol. 30, no. 6, pp. 1013–1022, Dec. 1979.MathSciNetMATHCrossRefGoogle Scholar
  27. [27]
    M. K. Sain, A. Ma, and D. Perkins, “Sensitivity issues in decoupled control system design,” Proc. Southeastern Symposium on System Theory, pp 25–29, May 1980.Google Scholar
  28. [28]
    J. L. Peczkowski and M. K. Sain, “Control design with transfer functions, an application illustration:” Proc. Midwest Symposium on Circuits and Systems, pp. 47–52, Aug. 1980.Google Scholar
  29. [29]
    M. K. Sain and A. Ma, “Multivariable synthesis with reduced comparison sensitivity,” Proc. Joint Automatic Control Conference, vol. 1, Part WP-8B, Aug. 1980.Google Scholar
  30. [30]
    J. L. Peczkowski and S. A. Stopher, “Nonlinear multivariable synthesis with transfer functions,” Proc. Joint Automatic Control Conference, Paper WA-8D, Aug. 1980.Google Scholar
  31. [31]
    M. K. Sain, R. M. Schafer, and K. P. Dudek, “An application of total synthesis to robust coupled design,” Proc. Allerton Conference on Communication,Control,and Computing,pp. 386–395, Urbana-Champaign, IL, Oct. 1980.Google Scholar
  32. [32]
    J. L. Peczkowski and M. K. Sain, “Scheduled nonlinear control design for a turbojet engine,” Proc. IEEE International Symposium on Circuits and Systems, pp. 248–251, Apr. 1981.Google Scholar
  33. [33]
    M. K. Sain and J. L. Peczkowski, “An approach to robust nonlinear control design,” Proc. Joint Automatic Control Conference, Paper FA-3D, June 1981.Google Scholar
  34. [34]
    R. R. Gejji, On the Total Synthesis Problem of Linear Multivariable Control, Ph.D. Dissertation, Department of Electrical Engineering, University of Notre Dame, 1980.Google Scholar
  35. [35]
    S. MacLane and G. Birkhoff, Algebra, Macmillan, New York, 1967.MATHGoogle Scholar
  36. [36]
    M. F. Atiyah and I. G. MacDonald, Introduction to Commutative Algebra, Addison-Wesley, Reading, MA, 1969.MATHGoogle Scholar
  37. [37]
    B. F. Wyman and M. K. Sain, “The zero module and essential inverse systems,” IEEE Trans. Circuits and Systems, vol. CAS-27, no. 2, pp. 112–126, Feb. 1981.MathSciNetCrossRefGoogle Scholar
  38. [38]
    W. A. Porter, “Partial system inverses for adaptation, parameter estimation, and sensitivity reduction,” IEEE Trans. Circuits and Systems, vol. CAS-25, no. 9, pp. 706–713, Sept. 1978.CrossRefGoogle Scholar
  39. [39]
    J. B. Cruz, Jr., Ed., System Sensitivity Analysis, Dowden, Hutchinson and Ross, Stroudsburg, PA, 1973.Google Scholar
  40. [40]
    P. J. Antsaklis, “Some relations satisfied by prime polynomial matrices and their role in linear multivariable system theory,” IEEE Trans. Automatic Control, vol. AC-24, no. 4, pp. 611–616, Aug. 1979.MathSciNetCrossRefGoogle Scholar
  41. [41]
    R. Liu and C. H. Sung, “On well-posed feedback systems—In an algebraic setting,” Proc. 19th IEEE Conference on Decision and Control, pp. 269–271, Dec. 1980.Google Scholar
  42. [42]
    V. H. L. Cheng and C. A. Desoer, “Limitations on the closed-loop transfer function due to right-half plane transmission zeros of the plant,” IEEE Trans. Automatic Control, vol. 25, no. 6, pp. 1218–1220, Dec. 1980.MATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Michael K. Sain
  • Bostwick F. Wyman

There are no affiliations available

Personalised recommendations