Skip to main content

Data Fusion Modeling for Groundwater Systems using Generalized Kalman Filtering

  • Chapter
Stability and Control of Dynamical Systems with Applications

Part of the book series: Control Engineering ((CONTRENGIN))

  • 473 Accesses

Abstract

Engineering projects involving groundwater systems are faced with uncertainties because the earth is heterogeneous and data sets are fragmented. Current methods providing support for management decisions are limited by the data types, models, computations, or simplifications. Data fusion modeling (DFM) removes many of the limitations and provides predictive modeling to help close the management control loop. DFM is a spatial and temporal state estimation and system identification methodology that uses three sources of information: measured data, physical laws, and statistical models for uncertainty in spatial heterogeneities and for temporal variation in driving terms. Kalman filtering methods are generalized by introducing information filtering methods due to Bierman coupled with (1) a Markov random field representation for spatial variation and (2) the representer method for transient dynamics from physical oceanography. DFM provides benefits for waste management, water supply, and geotechnical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. F. Bennett Inverse Methods in Physical Oceanography Cambridge University Press, New York, 1992.

    Book  MATH  Google Scholar 

  2. D. P. Bertsekas Constrained Optimization and Lagrange Multiplier Methods Academic Press, New York, 1982.

    MATH  Google Scholar 

  3. G. J. Bierman Factorization Methods for Discrete Sequential Estimation Academic Press, New York, 1977.

    MATH  Google Scholar 

  4. G. J. Bierman and D.W. Porter, “Decentralized tracking via new square root information filter (SRIF) concepts,” Business and Technological Systems BTS-34–87–32, 1988.

    Google Scholar 

  5. J. Carrera and L. Glorioso, “On geostatistical formulations of the groundwater flow inverse problem,” Advanced Water Resources vol. 14, no. 5, pp. 273–283, 1991.

    Article  Google Scholar 

  6. J. Carrera and S. P. Neuman, “Estimation of aquifer parameters under transient and steady state conditions: 1. Maximum likelihood method incorporating prior information,” Water Resources Research vol. 22, no. 2, pp. 199–210, 1986.

    Article  Google Scholar 

  7. J. Carrera and S. P. Neuman, “Estimation of aquifer parameters under transient and steady state conditions: 2. Uniqueness, stability, and solution algorithms,” Water Resources Research vol. 22, no. 2, pp. 211–227, 1986.

    Article  Google Scholar 

  8. J. Carrera and S. P. Neuman, “Estimation of aquifer parameters under transient and steady state conditions: 3. Application to synthetic and field data,” Water Resources Research vol. 22, no. 2, pp. 228–242, 1986.

    Article  Google Scholar 

  9. R. Chellappa and A. Jain Markov Random Fields: Theory and Application Academic Press, Boston, MA, 1991.

    Google Scholar 

  10. J. J. Clark and A. L. Yuille Data Fusion for Sensory Information Processing Systems Kluwer, Boston, MA, 1990.

    Google Scholar 

  11. R. L. Cooley, “Incorporation of prior information on parameters into nonlinear regression groundwater flow models,” Water Resources Research vol. 18, no. 2, pp. 965–976, 1982.

    Article  Google Scholar 

  12. P. Courtier, J. Derber, R. Errico, J. E Louis, and T. Vukicevic, “Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology,” Tellus vol. 45A, no. 2, pp. 342–357, 1993.

    Google Scholar 

  13. G. Dagan, “Stochastic modeling of groundwater flow by unconditional and conditional probabilities: The inverse problem,” Water Resources Research vol. 21, no. 2, pp. 65–72, 1985.

    Article  Google Scholar 

  14. M. M. Daniel and A. S. Willsky,“A multiresolution methodology for signal-level fusion and data assimilation with applications to remote sensing,“ Proc. IEEE vol. 85, no. 1, pp. 164–180, 1997.

    Article  Google Scholar 

  15. D. B. Duncan and S. D. Horn, “Linear dynamic recursive estimation from the viewpoint of regression analysis,” J. American Statistical Association vol. 67, no. 340, pp. 815–821,1972.

    MathSciNet  MATH  Google Scholar 

  16. M. J. Eppstein and D. E. Dougherty, “Simultaneous estimation of transmissivity values and zonation,” Water Resources Research vol. 32, no. 11, pp. 3321–3336,1996.

    Article  Google Scholar 

  17. R. A. Freeze, J. Massmann, L. Smith, T. Sperling, and B. James, “Hydrogeological decision analysis: 1. A framework,” Ground Water vol. 28, no. 5, pp. 738–766, 1990.

    Article  Google Scholar 

  18. L. W. Gelhar, “Stochastic subsurface hydrology from theory to applications,” Water Resources Research vol. 22, no. 9, pp. 1355–1455, 1986.

    Article  Google Scholar 

  19. S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images,” IEEE Trans. Pattern Analysis and Machine Intelligence vol. PAMI-6, no. 6, pp. 721–741, 1984.

    Article  MATH  Google Scholar 

  20. M. Ghil, “Meteorological data assimilation for oceanographers. Part 1: Description and theoretical framework,” Dynamics of Atmospheres and Oceans vol. 13, pp. 171–218, 1989.

    Article  Google Scholar 

  21. D. L. Hall Mathematical Techniques in Multisensor Data Fusion Artech House, Boston, MA, 1992.

    Google Scholar 

  22. M. C. Hill, “A computer program (MODFLOWP) for estimating parameters of a transient, three-dimensional, ground-water flow model using nonlinear regression,” U.S. Geological Survey Report 91–484,1992.

    Google Scholar 

  23. R. J. Hoeksema and P. K. Kitinidis, “An application of the geostatistical approach to the inverse problem in two-dimensional groundwater modeling,” Water Resources Research vol. 20, no. 7, pp. 1003–1020, 1984.

    Article  Google Scholar 

  24. A. K. Jain, “Advances in mathematical models for image processing,” Proc. IEEE vol. 69, no. 5, pp. 502–528, 1981.

    Article  Google Scholar 

  25. A. G. Journal and C. J. Huijbregts Mining Geostatistics Academic Press, New York, 1991.

    Google Scholar 

  26. R. E. Kalman, “A new approach to linear filtering and prediction problems,” Trans. ASME Ser. D: J. Basic Engineering vol. 82, pp. 35–45,1960.

    Article  Google Scholar 

  27. P. K. Kitanidis and E. G. Vomvoris, “A geostatistical approach to the inverse problem in groundwater modeling (steady state) and one-dimensional simulations,” Water Resources Research vol. 19, no. 3, pp. 677–690, 1983.

    Article  Google Scholar 

  28. L. J. Levy and D. W. Porter, “Large-scale system performance prediction with confidence from limited field testing using parameter identification,” Johns Hopkins APL Technical Digest vol. 13, no. 2, pp. 300–308, 1992.

    Google Scholar 

  29. A. Medina and J. Carrera, “Coupled estimation of flow and solute transport parameters,” Water Resources Research vol. 32, no. 10, pp. 3063–3076,1996.

    Article  Google Scholar 

  30. D. McLaughlin and L. R. Townley, “A reassessment of the groundwater inverse problem,” Water Resources Research vol. 32, no. 5, pp. pp. 1131–1161, May 1996.

    Google Scholar 

  31. D. W. Porter, “Quantitative data fusion: A distributed/parallel approach to surveillance, tracking, and navigation using information filtering,” Proc. Fifth Joint Service Data Fusion Symposium Johns Hopkins University/Applied Physics Laboratory, Laurel, MD, Oct. 1991.

    Google Scholar 

  32. D. W. Porter, B. P. Gibbs, W. F. Jones, P. S. Huyakorn, L. L. Hamm, and G. P. Flach, “Data fusion modeling for groundwater systems,” J. Contaminant Hydrology vol. 42, pp. 303–335, 2000.

    Article  Google Scholar 

  33. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery Numerical Recipes in FORTRAN: The Art of Scientific Computing Cambridge University Press, New York, 1992.

    Google Scholar 

  34. Y. Saad Iterative Methods for Sparse Linear Systems PWS Publishing Company, Boston, MA, 1996.

    MATH  Google Scholar 

  35. M. I. Sezan and A. M. Tekalp, “Survey of recent developments in digital image restoration,” Optical Engineering vol. 29, no. 5, pp. 393–404, 1990.

    Article  Google Scholar 

  36. M. F. Snodgrass and P. K. Kitanidis, “A geostatistical approach to contaminant source identification,” Water Resources Research vol. 33, no. 4, pp. 537–546, Apr. 1997.

    Article  Google Scholar 

  37. N. Z. Sun and W. W. G. Yeh, “A stochastic inverse solution for transient groundwater flow: Parameter identification and reliability analysis,” Water Resources Research vol. 28, no. 12, pp. 3269–3280, 1992.

    Article  Google Scholar 

  38. E C. Van Geer, C. B. M. Te Stroet, and Z. Yangxiao, “Using Kalman filtering to improve and quantify the uncertainty of numerical groundwater simulations 1. The role of system noise and its calibration,” Water Resources Research vol. 27, no. 8, pp. 1987–1994, 1991.

    Article  Google Scholar 

  39. J. S. Vandergraft, “Efficient optimization methods for maximum likelihood parameter estimation,” Proc. 24th Conference on Decision and Control Ft. Lauderdale, FL, 1985.

    Google Scholar 

  40. P. Whittle, “On stationary processes in the plane,” Biometrika vol. 41, pp. 434–449, 1954.

    MathSciNet  MATH  Google Scholar 

  41. Z. Yangxiao, C. B. M. Te Stroet, and F. C. Van Geer, “Using Kalman filtering to improve and quantify the uncertainty of numerical groundwater simulations 2. Application to monitoring network design,” Water Resources Research vol. 27, no. 8, pp. 1995–2006, 1991.

    Article  Google Scholar 

  42. Z. T. Yucel and R. H. Shumway, “A spectral approach to estimation and smoothing of continuous spatial processes,” Stochastic Hydrology and Hydraulics vol. 10, pp. 107–126, 1996

    Article  MATH  Google Scholar 

  43. S. Zou and A. Parr, “Optimal estimation of two-dimensional contaminant transport,” Ground Water vol. 33, no. 2, pp. 319–325,1995.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Porter, D.W. (2003). Data Fusion Modeling for Groundwater Systems using Generalized Kalman Filtering. In: Liu, D., Antsaklis, P.J. (eds) Stability and Control of Dynamical Systems with Applications. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0037-6_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0037-6_17

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6583-2

  • Online ISBN: 978-1-4612-0037-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics