Skip to main content

Part of the book series: Control Engineering ((CONTRENGIN))

  • 853 Accesses

Abstract

The engineering systems described in the previous chapters are fully actuated (the number of control inputs (actuators) equal the number of degrees of freedom). However, because of actuator failures or various construction constraints some applications are underactuated (the degrees of freedom exceed the number of control inputs). Underactuated systems present challenging control problems since the control design must typically exploit some coupling between the unactuated states and the actuated states to achieve the control objective. In the subsequent sections, the particular control issues related to the underactuated nature of several engineering applications are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Ahmed, V. Coppola, and D. Bernstein, “Adaptive Asymptotic Tracking of Spacecraft Attitude Motion with Inertia Matrix Identification,”Journal of Guidance Control and DynamicsVol. 21, No. 5, Sept.-Oct. 1998, pp. 684–691.

    Article  Google Scholar 

  2. J. Ahmed and D. Bernstein, “Globally Convergent Adaptive Control of Spacecraft Angular Velocity Without Inertia Modeling,”Proceedings of the American Control ConferenceSan Diego, CA, June 1999, pp. 1540–1544.

    Google Scholar 

  3. S. Al-Hiddabi and N. McClamroch, “Output Tracking for Nonlinear Nonminimum-Phase VTOL Aircraft,”Proceedings of the IEEE Conference on Decision and ControlTampa, FL, Dec. 1998, pp. 4573–4578.

    Google Scholar 

  4. S. Al-Hiddabi, J. Shen, and N. McClamroch, “A Study of Flight Maneuvers for the PVTOL Aircraft Model,”Proceedings of the American Control ConferenceSan Diego, CA, June 1999, pp. 2727–2731.

    Google Scholar 

  5. S. Al-Hiddabi and N. McClamroch, “Trajectory Tracking Control and Maneuver Regulation Control for the CTOL Aircraft Model,”Proceedings of the IEEE Conference on Decision and ControlPhoenix, AZ, Dec. 1999, pp. 1958–1963.

    Google Scholar 

  6. A. Behal, W. Dixon, D. Dawson, and Y. Fang, “Tracking and Regulation Control of an Underactuated Surface Vessel with Nonintegrable Dynamics,”Proceedings of the IEEE Conference on Decision and ControlSydney, Australia, Dec. 2000, pp. 2150–2155.

    Google Scholar 

  7. A. Behal, D. M. Dawson, E. Zergeroglu, and Y. Fang“Nonlinear Tracking Control of an Underactuated Spacecraft,”AIAA Journal of Guidance Control and DynamicsVol.. 25, No. 5, Sept.¡ªOct. 2002, pp. 979–985.

    Article  Google Scholar 

  8. J. Boskovie, S. Li, and R. Mehra, “Globally Stable Adaptive Tracking Control Design for Spacecraft under Input Saturation,”Proceedings of the IEEE Conference on Decision and ControlPhoenix, AZ, Dec. 1999, pp. 1952–1957.

    Google Scholar 

  9. R. Brockett, “Asymptotic Stability and Feedback Stabilization,” in Differential Geometric Control Theory (R. Brockett, R. Millman, and H. Sussmann, eds.), Boston, MA: Birkhauser, 1983.

    Google Scholar 

  10. T. Burg, D. Dawson, C. Rahn, and W. Rhodes, “Nonlinear Control of an Overhead Crane via the Saturating Control Approach of Teel,”Proceedings of the IEEE International Conference on Robotics and Automation1996, pp. 3155–3160.

    Google Scholar 

  11. H. Butler, G. Honderd, and J. Van Amerongen, “Model Reference Adaptive Control of a Gantry Crane Scale Model,”IEEE Control Systems MagazineJan. 1991, pp. 57–62.

    Google Scholar 

  12. C. Byrnes and A. Isidori, “On the Attitude Stabilization of Rigid Spacecraft,”AutomaticaVol. 27, 1991, pp. 87–95.

    Article  MathSciNet  MATH  Google Scholar 

  13. C. Chung and J. Hauser, “Nonlinear Control of a Swinging Pendulum,”AutomaticaVol. 31, No. 6, 1995, pp. 851–862.

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Collado, R. Lozano, and I. Fantoni, “Control of Convey-crane Based on Passivity,”Proceedings of the American Control Conference2000, pp. 1260–1264.

    Google Scholar 

  15. J. Coron and E. Kerai, “Explicit Feedbacks Stabilizing the Attitude of a Rigid Spacecraft with Two Control Torques,”AutomaticaVol. 32, 1996, pp. 669–677.

    Article  MathSciNet  MATH  Google Scholar 

  16. B. Costic, D. Dawson, M. de Queiroz, and V. Kapila, “A Quaternion-Based Adaptive Attitude Tracking Controller Without Velocity Measurements,”Journal of Guidance Control and DynamicsVol. 24, No. 6, Nov. 2001, pp. 1214–1222.

    Google Scholar 

  17. P. Crouch, “Spacecraft Attitude Control and Stabilization: Applications of Geometric Control Theory to Rigid Body Models,”IEEE Transactions on Automatic ControlVol. 29, No. 4, 1984, pp. 321–331.

    Article  MATH  Google Scholar 

  18. M. Dalsmo and O. Egeland, “State Feedback 1-lam-Suboptimal Control of a Rigid Spacecraft,”IEEE Transactions on Automatic ControlVol. 42, No. 8, Aug. 1997, pp. 1186–1189.

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Dixon, D. Dawson, E. Zergeroglu, and F. Zhang, “Robust Tracking and Regulation Control for Mobile Robots,”International Journal of Robust and Nonlinear Control(Special Issue on Control of Underactuated Nonlinear Systems), Vol. 10, 2000, pp. 199–216.

    MathSciNet  MATH  Google Scholar 

  20. Y. Fang, W. E. Dixon, D. M. Dawson, and E. Zergeroglu, “Nonlinear Coupling Control Laws for a 3-DOF Overhead Crane System,”IEEE Transactions on Mechatronicsto appear.

    Google Scholar 

  21. I. Fantoni, R. Lozano, and M. W. Spong, “Energy Based Control of the Pendubot,”IEEE Transactions on Automatic ControlVol. 45, No. 4, 2000, pp. 725–729.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Fliess, J. Levine, P. Martin, and P. Rouchon“A Lie-Backlund Approach to Equivalence and Flatness of Nonlinear Systems,” IEEE Transactions on Automatic ControlVol.44, No. 5, May 1999.

    Google Scholar 

  23. T. I. FossenGuidance and Control of Ocean VehiclesChichester, UK: John Wiley, 1994.

    Google Scholar 

  24. F. Gomez-Estern, R. Ortega, F. R. Rubio, J. Acacil, “Stabilization of a Class of Underactuated Mechanical Systems via Total Energy Shaping,”Proceedings of the IEEE Conference on Decision and Control2001, pp. 1137–1143.

    Google Scholar 

  25. J. Hauser, S. Sastry, and G. Meyer, “Nonlinear Control Design for Slightly Nonminimum-Phase Systems: Application to V/STOL Aircraft,”AutomaticaVol. 28, No. 4, 1992, pp. 665–679.

    Article  MathSciNet  MATH  Google Scholar 

  26. J. Hendrikx, T. Meijlink, and R. Kriens, “Application of Optimal Control Theory to Inverse Simulation of Car Handling,”Vehicle System DynamicsVol. 26, 1996, pp. 449–461.

    Article  Google Scholar 

  27. R. Horn and C. JohnsonMatrix AnalysisCambridge, UK: Cambridge University Press, 1985.

    Google Scholar 

  28. P. HughesSpacecraft Attitude DynamicsNew York, NY: Wiley, 1994.

    Google Scholar 

  29. Intelligent Systems Control Ltd., “3DCrane: Installation and Commissioning,” Version 1.2., 2000.

    Google Scholar 

  30. T. Kane, P. Likins, and D. LevinsonSpacecraft DynamicsNew York, NY: McGraw-Hill, 1983.

    Google Scholar 

  31. B. Kiss, J. Levine, and P. Mullhaupt, “A Simple Output Feedback PD Controller for Nonlinear Cranes,”Proceedings of the IEEE Conference on Decision and Control Dec.2000, pp. 5097–5101.

    Google Scholar 

  32. M. Krstic and P. Tsiotras, “Inverse Optimal Stabilization of a Rigid Spacecraft,”IEEE Transactions on Automatic ControlVol. 44, No. 5, May 1999, pp. 1042–1049.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Lee“Modeling and Control of a Three-Dimensional Overhead Cranes,”ASME Journal of Dynamic Systems Measurement and ControlVol. 120, 1998, pp. 471–476.

    Article  Google Scholar 

  34. F. Lin, W. Zhang, and R. Brandt, “Robust Hovering Control of a PVTOL Aircraft,”IEEE Transactions on Control Systems TechnologyVol. 7, No. 3, 1999, pp. 343–351.

    Article  Google Scholar 

  35. R. Lozano, I. Fantoni, and D. J. Block, “Stabilization of the Inverted Pendulum Around Its Homoclinic Orbit,”Systems and Controls LettersVol. 40, No. 3, 2000, pp. 197–204.

    Article  MathSciNet  MATH  Google Scholar 

  36. P. Martin, S. Devasia, and B. Paden, “A Different Look at Output Tracking: Control of a VTOL Aircraft,”AutomaticaVol. 32, No. 1, 1996, pp. 101–107.

    Article  MATH  Google Scholar 

  37. S. C. Martindale, D. M. Dawson, J. Zhu, and C. Rahn, “Approximate Nonlinear Control for a Two Degree of Freedom Overhead Crane: Theory and Experimentation,”Proceedings of the American Control Conference1995, pp. 301–305.

    Google Scholar 

  38. N. McClamroch and I. Kolmanovsky, “A Hybrid Switched Mode Control Approach for V/STOL Flight Control Problems,”Proceedings of the IEEE Conference on Decision and ControlKobe, Japan, Dec. 1996, pp. 2648–2653.

    Google Scholar 

  39. G. Meyer, “Design and Global Analysis of Spacecraft Attitude Control Systems,”NASA Technology Report R-361 Mar.1971.

    Google Scholar 

  40. P. Morin, C Samson, J. Pomet, and Z. Jiang, “Time-Varying Feedback Stabilization of the Attitude of a Rigid Spacecraft with Two Controls,”Systems and Controls LettersVol. 25, 1995, pp. 375–385.

    Article  MathSciNet  MATH  Google Scholar 

  41. P. Morin and C. Samson, “Time-Varying Exponential Stabilization of a Rigid Spacecraft with Two Control Torques,”IEEE Transactions on Automatic ControlVol.42, No. 4, Apr. 1997, pp.528–534.

    Article  MathSciNet  Google Scholar 

  42. K. A. F. Moustafa and A. M. Ebeid, “Nonlinear Modeling and Control of Overhead Crane Load Sway,”.ASME Journal of Dynamic Systems Measurement and ControlVol. 110, 1988, pp. 266–271.

    Article  Google Scholar 

  43. M. W. Noakes and J. F. Jansen, “Generalized Inputs for Damped-Vibration Control of Suspended Payloads,”Robotics and Autonomous SystemsVol. 10, 1992, pp. 199–205.

    Article  Google Scholar 

  44. M. Oishi and C. Tomlin, “Switched Nonlinear Control of a VSTOL Aircraft,”Proceedings of the IEEE Conference on Decision and ControlPhoenix, AZ, Dec. 1999, pp. 2685–2690.

    Google Scholar 

  45. M. Oishi and C. Tomlin, “Switching in Nonminimum-Phase Systems: Applications to VSTOL Aircraft,”Proceedings of the American Control ConferenceChicago, IL, June 2000, pp. 487–491.

    Google Scholar 

  46. R. Ortega, M. W. Spong, and F. Gomez-Estern, “Stabilization of Underactuated Mechanical Systems via Interconnection and Damping Assignment,”IEEE Transactions on Automatic ControlVol. 47, No. 8, Aug. 2002, pp. 1218–1233.

    Article  MathSciNet  Google Scholar 

  47. Y. Sakawa and H. Sano, “Nonlinear Model and Linear Robust Control of Overhead Traveling Cranes,”Nonlinear AnalysisVol. 30, No. 4, 1997, pp. 2197–2207.

    Article  MATH  Google Scholar 

  48. H. Schaub, M. Akella, and J. Junkins, “Adaptive Control of Nonlinear Attitude Motions Realizing Linear Closed-Loop Dynamics,”Proceedings of the American Control ConferenceSan Diego, CA, June 1999, pp. 1563–1567.

    Google Scholar 

  49. P. Setlur, D. Dawson, J. Wagner, and Y. Fang, “Nonlinear Tracking Controller Design for Steer-by-Wire Automotive Systems,”Proceedings of the American Control ConferenceAnchorage, AK, 2002, pp. 280–285.

    Google Scholar 

  50. H. Sira-Ramirez, “Nonminimum-Phase Output Reference Trajectory Tracking for a PVTOL Aircraft,”Proceedings of the IEEE Conference on Control ApplicationsAnchorage, AK, Sept. 2000, pp. 838–843.

    Google Scholar 

  51. J. -J. E. Slotine and W. LiApplied Nonlinear ControlEnglewood Cliffs, NJ: Prentice-Hall, 1991.

    Google Scholar 

  52. A. R. Teel, “Semi-global Stabilization of the `Ball and Beam’ Using `Output’ Feedback,”Proceedings of the American Control Conference1993, pp. 2577–2581.

    Google Scholar 

  53. P. Tsiotras and J. Luo, “Control of Underactuated Spacecraft with Bounded Inputs,”AutomaticaVol 36, No. 8, 2000, pp. 1153–1169.

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Wen and K. Kreutz-Delgado, “The Attitude Control Problem,”IEEE Transactions on Automatic ControlVol. 36, No. 10, Oct. 1991, pp. 1148–1162.

    Article  MathSciNet  MATH  Google Scholar 

  55. Z. Yao, N. P. Costescu, S. P. Nagarkatti, and D. M. Dawson, “Real-Time Linux Target: A MATLAB-Based Graphical Control Environment,”Proceedings of the IEEE Conference on Control ApplicationsAnchorage, AK, 2000, pp. 173–178.

    Google Scholar 

  56. K. Yoshida and H. Kawabe, “A Design of Saturating Control with a Guaranteed Cost and Its Application to the Crane Control System,”IEEE Transactions on Automatic ControlVol. 37, No. 1, 1992, pp. 121–127.

    Article  MathSciNet  Google Scholar 

  57. K. Yoshida, “Nonlinear Controller Design for a Crane System with State Constraints,”Proceedings of the American Control Conference1998, pp. 1277–1283.

    Google Scholar 

  58. J. Yu, F. L. Lewis, and T. Huang, “Nonlinear Feedback Control of a Gantry Crane,”Proceedings of the American Control ConferenceSeattle, WA, 1995, pp. 4310–4315.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Dixon, W.E., Behal, A., Dawson, D.M., Nagarkatti, S.P. (2003). Underactuated Systems. In: Nonlinear Control of Engineering Systems. Control Engineering. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0031-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0031-4_6

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6581-8

  • Online ISBN: 978-1-4612-0031-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics