Skip to main content

Defining Relations for the Exceptional Lie Superalgebras of Vector Fields

  • Chapter
  • 764 Accesses

Part of the book series: Progress in Mathematics ((PM,volume 213))

Abstract

We list defining relations for four of the five exceptional simple Lie superalgebras of vector fields with polynomial coefficients. This is done for one of many inequivalent systems of simple roots (generators). For the fifth superalgebra the result is not final: there might be infinitely many relations. On the contrary, for the same Lie super-algebra with Laurent polynomials as coefficients there are only finitely many relations. To show perspective, the complete list of simple complex vectorial Lie superalgebras is given, and their relations have been calculated (also for one system of generators only) in [GLP].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alekseevsky D., Leites D., Shchepochkina I., New examples of simple Lie superalgebras of vector fields, Cr. Acad. Bulg. Sci., 34, no. 9 (1980), 1187–1190.

    Google Scholar 

  2. Bernard D., Hikami K., Wadati M., The Yangian Deformation of the W-Algebras and and the Calogero-Sutherland model, hep-th/9412194.

    Google Scholar 

  3. Bernstein J., Leites D., Invariant differential operators and irreducible representations of Lie superalgebras of vector fields, Serdika, 7 (1981), 320–334 (in Russian); Sel. Math. Sou, 1, no. 2 (1981), 143–160.

    MathSciNet  MATH  Google Scholar 

  4. Cheng Shun-Jen; Kac V., Generalized Spencer Cohomology and filtered Deformations of Z-graded Lie Superalgebras, math-RT/9805039; Adv. Theor. Math. Phys. 2, no. 5 (1998), 1141–1182.

    MathSciNet  MATH  Google Scholar 

  5. Cheng S., Kac V., Structure of some Z-graded Lie superalgebras of vector fields, Transformation Groups, 4 (1999), 219–272.

    Article  MathSciNet  MATH  Google Scholar 

  6. Deligne P. et al (eds), Quantum Fields and Strings: a Course for Math-ematicians. Vol. 1, 2. Material from the Special Year on Quantum Field Theory held at the Institute for Advanced Study, Princeton, NJ, 19961997. AMS, Providence, RI; Institute for Advanced Study (IAS), Princeton, NJ, 1999. Vol. 1: xxii+723 pp.; Vol. 2: pp. i-xxiv and 727–1501.

    MathSciNet  Google Scholar 

  7. Feigin B. L., Fuks D. B., Stable cohomology of the algebra W„ and relations in the algebra L1, (Russian) Funktsional. Anal. i Prilozhen, 18 no. 3 (1984), 94–95.

    MathSciNet  Google Scholar 

  8. Feigin B. L., Fuks D. B., Cohomology of Lie groups and Lie algebras. (Russian) Current problems in mathematics. Fundamental directions, Vol. 21 (Russian), 121–209, 215, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 198.

    Google Scholar 

  9. Floreanini R., Leites D., Vinet L., On defining relations of quantum superalgebras, Leu. Math. Phys., 23 (1991), 127–131.

    MathSciNet  MATH  Google Scholar 

  10. Freund P., Kaplansky I., Simple supersymmetries, J. Math. Phys., 17, no. 2 (1976), 228–231.

    Article  MathSciNet  MATH  Google Scholar 

  11. D. B. Fuks (Fuchs), Cohomology of Infinite Dimensional Lie Algebras. Consultants Bureau, NY, 1987.

    Book  Google Scholar 

  12. Gomis J., París J., Samuel S., Antibracket, antifields and gauge-theory quantization, Phys. Rept. 259 (1995), no. 1–2, 1–191.

    Article  Google Scholar 

  13. Grozman P., Classification of bilinear invariant operators on tensor fields (Russian), Funktsional. Anal. i Prilozhen, 14 no. 2, (1980), 58–59.

    MathSciNet  MATH  Google Scholar 

  14. Grozman P., Leites D., Mathematica-aided study of Lie algebras and their cohomology. From supergravity to ball bearings and magnetic hydrodynamics. In: Keränen V. (eds.), The Second International Mathematica Symposium, Rovaniemi, 1997, 185–192.

    Google Scholar 

  15. Grozman P., Leites D., Defining relations for classical Lie superalgebras with Cartan matrix, hep-th 9702073; Czech. J. Phys., 51, no. 1 (2001), 1–22.

    MathSciNet  MATH  Google Scholar 

  16. Grozman P., Leites D., Lie superalgebras of supermatrices of complex size. Their generalizations and related integrable systems. math.RT/0202177; In: by E. Ramirez de Arellano, M.V. Shapiro, L.M. Tovar and N.L. Vasilevski (eds.) Proc. Internatnl. Symp. Complex Analysis and Related Topics, Mexico, 1996, Birkhäuser Verlag, 1999, 73–105.

    Google Scholar 

  17. Grozman P., Leites D., Defining relations for simple Lie superalgebras without Cartan matrix. In: MPIM-2003, preprint, to appear.

    Google Scholar 

  18. Grozman P., Leites D., Poletaeva E., Defining relations for simple Lie superalgebras. Lie superalgebras without Cartan matrix. In: Ivanov E. et. al. (eds.), Supersymmetries and Quantum Symmetries (SQS’99, 2731 July, 1999), Dubna, JINR, 2000, 387–396; an expanded version in: Homology, Homotopy and Applications, vol 4 (2), 2002, 259–275.

    Google Scholar 

  19. Grozman P., Leites D., Shchepochkina I., Lie superalgebras of string theories, hep-th 9702120; Acta Mathematica Vietnamica, v. 26, 2001, no. 1, 27–63.

    MathSciNet  MATH  Google Scholar 

  20. Gomis J., Paris J., Samuel S., Antibracket, Antifields and Gauge-Theory Quantization, Phys. Rept. 259 (1995), 1–191.

    Article  MathSciNet  Google Scholar 

  21. Green M., Schwarz J., Witten E. Superstring theory, vv.1, 2, 2nd ed., Cambridge Monographs on Mathematical Physics., Cambridge Univ. Press, Cambridge, 1988. x+470 pp., xii+596 pp.

    Google Scholar 

  22. Kac V. G., Letter to editors, Funkcional. Anal. i prilozheniya, 10, no. 2 (1976), 93.

    Google Scholar 

  23. Kac V.G., Infinite Dimensional Lie Algebras. 3rd ed. Cambridge Univ. Press, Cambridge, 1990, xxii+400 pp.

    Book  MATH  Google Scholar 

  24. Kac V.G., Classification of infinite-dimensional simple linearly compact Lie superalgebras, ESI-preprint 605, 1997. (http://www.esi.ac.at)

    Google Scholar 

  25. Kac V. G., Classification of infinite-dimensional simple groups of super-symmetries and quantum field theory, math.QA/9912235.

    Google Scholar 

  26. Kac V. G., Lie superalgebras, Adv. Math 26 (1977), 8–96.

    Article  MATH  Google Scholar 

  27. Kac V., Classification of infinite-dimensional simple linearly compact Lie superalgebras. Adv. Math. 139 (1998), no. 1, 1–55

    Article  MathSciNet  MATH  Google Scholar 

  28. Kac, V. G., van de Leur, J. W. On classification of superconformal algebras. In: S. J. Gates, Jr., C. R. Preitschopf and W. Siegel (eds.), Strings ‘88 Proceedings of the workshop held at the University of Maryland, College Park, Maryland, May 24–28, 1988. World Scientific Publishing Co., Inc., Teaneck, NJ, 1989, 77–106.

    Google Scholar 

  29. Kac V., Superconformal algebras and transitive group actions on quadrics, Comm. Math. Phys. 186, no. 1 (1997), 233–252; Erratum: Comm. Math. Phys. 217, no. 3 (2001), 697–698.

    Article  MATH  Google Scholar 

  30. Kaplansky I., Superalgebras, Pacific J. Math. 86, no. 1 (1980), 93–98.

    MathSciNet  MATH  Google Scholar 

  31. Kirillov A. A., Ovsienko, V. Yu., Udalova, O. D., Identities in the Lie algebra of vector fields on the real line. Selecta Math. Soviet. 10, no. 1 (1991), 7–17.

    MathSciNet  Google Scholar 

  32. Kotchetkoff Yu., Déformations de superalgébres de Buttin et quantifica-tion, C. R. Acad. Sci. Paris, ser. I, 299, no. 14 (1984), 643–645.

    MathSciNet  MATH  Google Scholar 

  33. Kochetkov Yu., Deformations of Lie superalgebras, VINITI Depositions, Moscow (in Russian) 1985, 384–85.

    Google Scholar 

  34. Leites D., New Lie superalgebras and mechanics, Soviet Math. Dokl., 18, no. 5 (1977), 1277–1280.

    MATH  Google Scholar 

  35. Leites D., Lie superalgebras, In: Modern Problems of Mathematics. Recent developments, v. 25, VINITI, Moscow, 1984, 3–49 (in Russian; English translation in: JOSMAR (J. Soviet Math.) 30, no. 6 (1985), 2481–2512).

    MATH  Google Scholar 

  36. Leites D., Supermanifold Theory, Karelia Branch of the USSR Acad. Sci., Petrozavodsk, 1983, 200 pp. (in Russian; expanded in [L5]).

    Google Scholar 

  37. Leites D., Clifford algebra as a superalgebra and quantization, Theor. Math. Phys., 58, no. 2 (1984), 229–232; id., Quantization. Supplement 3. In: F. Berezin, M. Shubin, Schrödinger Equation, Kluwer, Dordrecht, 1991, 483–522.

    Google Scholar 

  38. Leites D. (ed.) Seminar on Supermanifolds, Reports of Stockholm University, 30/1988–13 and 31/1988–14.

    Google Scholar 

  39. Leites D., Poletaeva E., Defining relations for classical Lie algebras of polynomial vector fields. Math. Scand., 81, no. 1 (1997), 5–19.

    MathSciNet  MATH  Google Scholar 

  40. Leites D., Serganova V., Defining relations for simple Lie superalgebras, I. Lie superalgebras with Cartan matrix, In: J. Mickelsson, O. Peckkonen (eds.), Proc. of the Conf. Topological Methods in Physics, 1991, World Scientific, 1992, 194–201.

    Google Scholar 

  41. Leites D., Serganova V., Symmetries wider than supersymmetries, In: S. Duplij and J. Wess (eds.), Noncommutative Structures in Mathematics and Physics, Proc. NATO Advanced Research Workshop, Kiev, 2000. Kluwer, 13–30.

    Google Scholar 

  42. Leites D., Shchepochkina I., Towards classification of simple vectorial Lie superalgebras. In: [L5], 31/1988–14; Leites D., Toward classification of classical Lie superalgebras. In: Nahm W., Chau L.-L. (eds.) Differential geometric methods in theoretical physics (Davis, CA, 1988), NATO Adv. Sci. Inst. Ser. B Phys., 245, Plenum, New York, 1990, 633–651; Leites D., Shchepochkina I., Quivers and Lie superalgebras, Czech. J. Phys., vol 47, no. 12 (1997), 1221–1229.

    Google Scholar 

  43. Leites D., Shchepochkina I., How to quantize antibracket, preprint ESI875 (http://www.esi.ac.at); Theor. Math. Phys., 126, no. 3 (2001), 339–369.

    Article  MathSciNet  Google Scholar 

  44. Onishchik A., Vinberg E., Lie Groups and Algebraic Groups, Springer-Verlag, Berlin, 1990.

    Book  MATH  Google Scholar 

  45. Shchepochkina I., New exceptional simple Lie superalgebras, C. R. Bulg. Sci., 36, no. 3 (1983), 313–314.

    MathSciNet  MATH  Google Scholar 

  46. Shchepochkina I., Maximal subalgebras of simple Lie superalgebras. In: Leites D. (ed.), Seminar on Supermanifolds vols. 1–34, 1987–1990, v. 32/1988–15, Reports of Stockholm University, 1–43 (hep-th 9702120).

    Google Scholar 

  47. Shchepochkina I., The five exceptional simple Lie superalgebras of vector fields, hep-th 9702120; id., The five exceptional simple Lie super-algebras of vector fields, Soy. J. Funct. Analysis, 33, no.3 (1999), 14 pp.

    MathSciNet  Google Scholar 

  48. Shchepochkina I., Five exceptional simple Lie superalgebras of vector fields and their fourteen regradings, Represent. Theory, 3, no. 3 (1999), 373–415.

    MathSciNet  MATH  Google Scholar 

  49. Shchepochkina I., Post G., Explicit bracket in an exceptional simple Lie superalgebra, Internat. J. Algebra Comput., 8, no. 4 (1998), 479–495; physics 9703022.

    Article  MathSciNet  MATH  Google Scholar 

  50. Scheunert M., Nahm W., Rittenberg V., Classification of all simple graded Lie algebras whose Lie algebra is reductive. I, II. Construction of the exceptional algebras. J. Mathematical Phys., 17, no. 9 (1976), 1626–1639, 1640–1644.

    Article  MathSciNet  MATH  Google Scholar 

  51. Scheunert M., The theory of Lie superalgebras. An introduction, Lecture Notes in Mathematics, 716. Springer, Berlin, 1979.

    Google Scholar 

  52. Serganova V., Automorphisms of simple Lie superalgebras (Russian), Izv. Akad. Nauk SSSR Ser. Mat., 48, no. 3 (1984), 585–598; Feigin B. L., Leites D. A., Serganova V. V., Kac-Moody Superalgebras. In: Markov M. et al. (eds.), Group Theoretical Methods in Physics, Vol. 1–3 (Zvenigorod, 1982), 631–637, Harwood Academic Publ., Chur, 1985.

    Google Scholar 

  53. Serganova V., On generalizations of root systems, Comm. Algebra, 24, no. 13 (1996), 4281–4299.

    Article  MathSciNet  MATH  Google Scholar 

  54. Shmelev G. S., Differential operators that are invariant with respect to the Lie superalgebra H (2, 2; A.) and its irreducible representations (Russian), C. R. Acad. Bulgare Sci., 35, no. 3 (1982), 287–290.

    MathSciNet  MATH  Google Scholar 

  55. Sternberg S., Lectures on Differential Geometry, Chelsey, 2nd edition, 1985.

    Google Scholar 

  56. Sudbery A., Octonionic description of exceptional Lie superalgebras. J. Math. Phys. 24 (1983), no. 8, 1986–1988.

    Article  MathSciNet  MATH  Google Scholar 

  57. Tanaka N., On the pseudo-conformal geometry of hypersurfaces of the space of n complex variables, J. Math. Soc. Japan, 14, no. 4 (1962), 397–429.

    Article  MathSciNet  MATH  Google Scholar 

  58. Tanaka N., On generalized graded Lie algebras and geometric structures, I J. Math. Soc. Japan, 19 no. 2 (1967), 215–254.

    Article  MATH  Google Scholar 

  59. Tanaka N., On differential systems, graded Lie algebras and pseudo-groups, J. Math. Kyoto Univ., 10 (1970), 1–82.

    MathSciNet  MATH  Google Scholar 

  60. Tanaka N., On non-degenerate real hypersurfaces, graded Lie algebras and Cartan connections, Japan J. Math., 2 (1976), 131–190.

    MathSciNet  MATH  Google Scholar 

  61. Tanaka N., On the equivalence problems associated with simple graded Lie algebras, Hokkaido Math. J., 8 (1979), 23–84.

    MATH  Google Scholar 

  62. van de Leur J., A classification of contragredient Lie superalgebras of finite growth, Comm. Algebra, 17, no. 8 (1989), 1815–1841.

    Article  MathSciNet  MATH  Google Scholar 

  63. Wess J., Bagger J., Supersymmetry and Supergravity, Princeton Series in Physics, Princeton University Press, Princeton, N.J., 1983.

    Google Scholar 

  64. Woit P., String Theory: An Evaluation, physics/0102051; Larsson T., Symmetries of Everything, math-ph/0103013.

    Google Scholar 

  65. a Wess J., Zumino B., Supergauge transformations in four dimensions. Nuclear Phys. B70 (1974), 39–50;

    Article  MathSciNet  Google Scholar 

  66. Wess J., Bagger J., Supersymmetry and Supergravity. Second edition, Princeton University Press, Princeton, NJ, 1992.

    Google Scholar 

  67. Yamane H., On defining relations of affine Lie superalgebras and affine quantized universal enveloping superalgebras, q-alg 9603015; Publ. Res. Inst. Math. Sci. 35, no. 3 (1999), 321–390.

    MathSciNet  MATH  Google Scholar 

  68. Yamaguchi K., Differential systems associated with simple graded Lie algebras, Progress in differential geometry, Adv. Stud. Pure Math., 22, Math. Soc. Japan, Tokyo, 1993, 413–494.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Grozman, P., Leites, D., Shchepochkina, I. (2003). Defining Relations for the Exceptional Lie Superalgebras of Vector Fields. In: Duval, C., Ovsienko, V., Guieu, L. (eds) The Orbit Method in Geometry and Physics. Progress in Mathematics, vol 213. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0029-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0029-1_7

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6580-1

  • Online ISBN: 978-1-4612-0029-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics