Skip to main content

Finite Group Actions on Poisson Algebras

  • Chapter
The Orbit Method in Geometry and Physics

Part of the book series: Progress in Mathematics ((PM,volume 213))

Abstract

Let Andenote the Weyl algebra of all differential operators on the polynomial algebra C[X1,… Xn].It is well known that if G is a finite group of algebra automorphisms of An, then An is a simple algebra. (See [12] pp. 20–23 for an algebraic proof or [15] Lemma 1.2 for an analytic approach.) It is natural to expect that the analogous result holds for the associated graded object. To be precise, if Anis filtered by total degree, then the associated graded algebra is the larger polynomial ring R = C[X1, …Xn,Y1,… Yn]with the Poisson bracket which describes a standard symplectic affine space. To be explicit R is also a Lie algebra subject to

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Alev, M. A. Farinati, T. Lambre and A. L. Solotar, Homologie des invariants d’une algèbre de Weyl sous l’action d’un groupe fini, Journal of Algebra 232 (2000), 564–577.

    Article  MathSciNet  MATH  Google Scholar 

  2. J. Alev and T. Lambre, Comparaison de l’homologie de Hochschild et del’homologie de Poisson pour une déformation des surfaces de Klein, 2538 in Y. Khakimdjanov et al.Algebra and Operator Theory: Proceedings of the Colloquium Tashkent,UzbekistanKluwer Academic Publ., 1998.

    Google Scholar 

  3. K.B. Brown and I. Gordon, Poisson orders, Symplectic reflection algebras and representation theory, arXiv:math.RT/0201042.

    Google Scholar 

  4. J. DixmierEnveloping AlgebrasNorth-Holland Mathematics Library14Amsterdam, 1977.

    Google Scholar 

  5. P. Etingof and V. Ginzburg, Symplectic reflection algebras, CalogeroMoser space, and deformed Harish-Chandra homomorphismInvent. Math. 147 (2002), 243–348.

    Article  MathSciNet  MATH  Google Scholar 

  6. D. R. Farkas, Poisson polynomial identitiesComm. in Algebra 26(2) (1998), 401–416.

    Article  MathSciNet  MATH  Google Scholar 

  7. D. R. Farkas, Poisson polynomial identities IIArch. Math. 72 (1999), 252–260.

    Article  MathSciNet  MATH  Google Scholar 

  8. D. R. Farkas, Modules for Poisson algebrasComm. in Algebra 28(7) (2000), 3293–3306.

    Article  MathSciNet  MATH  Google Scholar 

  9. D. R. Farkas and G. Letzter, Ring theory from symplectic geometryJournal of Pure and Appl. Algebra 125(1998), 155–190.

    Article  MathSciNet  MATH  Google Scholar 

  10. I. N. HersteinTopics in Ring TheoryUniv. of Chicago Press, Chicago, 1969.

    Google Scholar 

  11. T. Levasseur, Anneaux d’opérateurs différentiels, Séminaire d’algèbre Malliavin, Lecture Notes in Math.867Springer-Verlag, Berlin, 1981.

    Google Scholar 

  12. S. Montgomery Fixed Rings of Finite Automorphism Groups of Associative Rings, Lecture Notes in Math. 818Springer-Verlag, Berlin, 1980.

    MATH  Google Scholar 

  13. M. NagataLocal RingsInterscience: John Wiley and Sons, New York, 1962.

    Google Scholar 

  14. J.-P. SerreLinear Representations of Finite GroupsGrad. Texts in Math. 42Springer-Verlag, New York, 1977.

    Book  MATH  Google Scholar 

  15. N. R. Wallach, Invariant differential operators on a reductive Lie algebra and Weyl group representationsJournal of AMS 6 (1993), 779–816.

    MathSciNet  Google Scholar 

  16. J. WolfSpaces of Constant CurvatureMcGraw-Hill, New York, 1967.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

Dedicated to A. A. Kirillov on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Alev, J., Farkas, D.R. (2003). Finite Group Actions on Poisson Algebras. In: Duval, C., Ovsienko, V., Guieu, L. (eds) The Orbit Method in Geometry and Physics. Progress in Mathematics, vol 213. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0029-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0029-1_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6580-1

  • Online ISBN: 978-1-4612-0029-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics