Skip to main content

The Generalized Cayley Map from an Algebraic Group to its Lie Algebra

  • Chapter
The Orbit Method in Geometry and Physics

Part of the book series: Progress in Mathematics ((PM,volume 213))

Abstract

Each infinitesimally faithful representation of a reductive complex connected algebraic group Ginduces a dominant morphism Φ from the group to its Lie algebra g by orthogonal projection in the endomorphism ring of the representation space. The map Φ identifies the field Q(G)of rational functions on Gwith an algebraic extension of the field Q(g)of rational functions on g. For the spin representation of Spin(V) the map Φ essentially coincides with the classical Cayley transform. In general, properties of Φ are established and these properties are applied to deal with a separation of variables (Richardson) problem for reductive algebraic groups: Find Harm(G) so that for the coordinate ring A(G) of G we have A(G) = A(G)G ® Harm(G). As a consequence of a partial solution to this problem and a complete solution for SL(n) one has in general the equality [Q(G): Q(g)] = [Q(G) G : Q(g) G ] of the degrees of extension fields. Among other results, Φ yields (for the complex case) a generalization, involving generic regular orbits, of the result of Richardson showing that the Cayley map, whenGis semisimple, defines an isomorphism from the variety of unipotent elements inGto the variety of nilpotent elements in g. In addition if G is semisimple the Cayley map establishes a diffeomorphism between the real submanifold of hyperbolic elements in G and the space of infinitesimal hyperbolic elements in g. Some examples are computed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardsley, P., Richardson, R.W., Etale slices for algebraic transformation groups in characteristicp Proc. Lond. Math. Soc. I. Ser. 51(1985), 295–317.

    Article  MathSciNet  MATH  Google Scholar 

  2. Borel, A.Linear Algebraic GroupsW. A. Benjamin, 1969.

    Google Scholar 

  3. Chevalley, C.The Algebraic Theory of SpinorsColumbia Univ. Press, New York, 1954.

    MATH  Google Scholar 

  4. Dynkin, E.B., Semisimple subalgebras of semisimple Lie algebrasMat. Sbornik Nov. Ser. 30(1952), 349–462. English transl. inAMS Transl. II. Ser 6(1957), 111–243.

    MATH  Google Scholar 

  5. Gorbatsevich, V.V., Onishchik, A.L., Vinberg, E.B., Structure of Lie groups and Lie algebras. In: Lie Groups and Lie Algebras III (eds., A.L. Onishchik, E.B. Vinberg), Encyclopedia of Mathematical Sciences41Springer-Verlag, Berlin, 1994.

    Google Scholar 

  6. Humphrey, J.Linear Algebraic GroupsGTM 21, Springer-Verlag, 1975, 1981.

    Google Scholar 

  7. Kostant, B., The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie groupAmer. J. Math. 81(1959), 973–1032.

    Article  MathSciNet  MATH  Google Scholar 

  8. Kostant B. Lie group representations on polynomial ringsBull. Amer. Math. Soc. 69(1963), 518–526.

    Article  MathSciNet  MATH  Google Scholar 

  9. Kostant, B., Lie group representations on polynomial ringsAmer. J. Math. 85(1963), 327–404.

    Article  MathSciNet  MATH  Google Scholar 

  10. Kostant B. Eigenvalues of a Laplacian and commutative Lie subalgebrasTopology 3(1965), 147–159.

    Article  MathSciNet  MATH  Google Scholar 

  11. Kostant, B., On Convexity, the Weyl group and the Iwasawa decompositionAnn. Scient. Ec. Norm. Sup. 6(1973), 413–455.

    MathSciNet  MATH  Google Scholar 

  12. Kostant, B., Clifford Algebra Analogue of the Hopf-Koszul-Samelson Theorem, the p-decompositionC(g)= EndV p ®C(P)and the g-module structure of A g Adv. of Math. 125(1997), 275–350.

    Article  MathSciNet  MATH  Google Scholar 

  13. Lipschitz, R., CorrespondenceAnn. Math. 69(1959), 247–251.

    Article  MathSciNet  MATH  Google Scholar 

  14. Luna, D., Slices étalesBull. Soc. Math. FranceMémoire33(1973), 81–105.

    MATH  Google Scholar 

  15. Richardson, R. W., The conjugating representation of a semisimple groupInvent. Math. 54 (1979)229–245.

    Article  MathSciNet  MATH  Google Scholar 

  16. Richardson, R. W., An application of the Serre conjecture to semisimple algebraic groups. InAlgebra Carbondale 1980Lecture Notes in Math. 848, Springer-Verlag, 1981, pp. 141–151.

    Google Scholar 

  17. Springer, T. A. The unipotent variety of a semisimple group. InAlgebr. Geom. Bombay Colloq. 19681969, pp. 373–391.

    MathSciNet  Google Scholar 

  18. Steinberg, R., Regular elements of semisimple algebraic groupsInst. Hautes Études Sci. Publ. Math. 25(1965), 49–80.

    Article  Google Scholar 

  19. Steinberg, R.Conjugacy Classes in Algebraic Groups. Notes by Vinay V. DeodharLecture Notes in Mathematics 36, Springer-Verlag, 1974, pp. vi+159.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

For Alexander Kirillov on the occasion of his 65th birthday

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Kostant, B., Michor, P.W. (2003). The Generalized Cayley Map from an Algebraic Group to its Lie Algebra. In: Duval, C., Ovsienko, V., Guieu, L. (eds) The Orbit Method in Geometry and Physics. Progress in Mathematics, vol 213. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0029-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0029-1_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6580-1

  • Online ISBN: 978-1-4612-0029-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics