On the Nonexistence of Certain Divergence-free Multiwavelets

  • J. D. Lakey
  • M. C. Pereyra
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)


We show that there are no biorthogonal pairs of divergence-free multiwavelet families on Rnhaving any regularity, such that both biorthogonal families have compactly supported, divergence-free generators. This main result generalizes Lemarié’s bivariate result. In particular, our method is based on vector-valued multiresolution analyses.


Compact Support Trigonometric Polynomial Multiresolution Analysis Riesz Basis Dyadic Cube 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    de Boor, R., DeVore, R., and Ron, A., The structure of finitely generated shift invariant spaces in L2(Rd) J. Functional Anal. 119 (1994), 37–78.MATHCrossRefGoogle Scholar
  2. [2]
    Lemarié-Rieusset, P. G., Projecteurs invariants, matrices de dilatation, ondelettes et analyses multi-résolution Rev. Mat. Iberoamericana 8 (1992), 221–237.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Lemarié-Rieusset, P. G., Un théorème d’inexistence pour les ondelettes vecteurs à divergence nulle C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 811–813.MATHGoogle Scholar
  4. [4]
    Lakey, J., Massopust, P., and Pereyra, M.C., Divergence-free multiwavelets, in Proc. Approximation Theory IX. 2:161–168 (1998), C. K. Chui and L. L. Schumaker (eds).MathSciNetGoogle Scholar
  5. [5]
    Urban, K., On divergence-free wavelets Adv. Comput. Math. 4 (1995), 51–81.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. D. Lakey
  • M. C. Pereyra

There are no affiliations available

Personalised recommendations