On the Nonexistence of Certain Divergence-free Multiwavelets

  • J. D. Lakey
  • M. C. Pereyra
Chapter
Part of the Applied and Numerical Harmonic Analysis book series (ANHA)

Abstract

We show that there are no biorthogonal pairs of divergence-free multiwavelet families on Rnhaving any regularity, such that both biorthogonal families have compactly supported, divergence-free generators. This main result generalizes Lemarié’s bivariate result. In particular, our method is based on vector-valued multiresolution analyses.

Keywords

Covariance Autocorrelation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    de Boor, R., DeVore, R., and Ron, A., The structure of finitely generated shift invariant spaces in L2(Rd) J. Functional Anal. 119 (1994), 37–78.MATHCrossRefGoogle Scholar
  2. [2]
    Lemarié-Rieusset, P. G., Projecteurs invariants, matrices de dilatation, ondelettes et analyses multi-résolution Rev. Mat. Iberoamericana 8 (1992), 221–237.MathSciNetMATHCrossRefGoogle Scholar
  3. [3]
    Lemarié-Rieusset, P. G., Un théorème d’inexistence pour les ondelettes vecteurs à divergence nulle C. R. Acad. Sci. Paris Sér. I Math. 319 (1994), 811–813.MATHGoogle Scholar
  4. [4]
    Lakey, J., Massopust, P., and Pereyra, M.C., Divergence-free multiwavelets, in Proc. Approximation Theory IX. 2:161–168 (1998), C. K. Chui and L. L. Schumaker (eds).MathSciNetGoogle Scholar
  5. [5]
    Urban, K., On divergence-free wavelets Adv. Comput. Math. 4 (1995), 51–81.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • J. D. Lakey
  • M. C. Pereyra

There are no affiliations available

Personalised recommendations