Digital Filter Design via Sampled-Data Control Theory

  • Yutaka Yamamoto
  • Masaaki Nagahara
Part of the Trends in Mathematics book series (TM)


This paper describes a new filter design method based on modern sampled-data control theory. Unlike the conventional design methods executed in the discrete-time domain, the method has the advantage of optimizing an analog performance with built-in intersample behavior. Such a design method is seen to be effective when the original analog signals are not ideally band-limited. A design example is given to illustrate the method.


Digital signal processing Sampled-data control theory Analog performance H∞ control 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Balas, J. C. Doyle, K. Glover, A. Packard, and R. Smith, p-Analysis and Synthesis Toobox. MUSYN and The MathWorks, 1994.Google Scholar
  2. 2.
    T. Chen and B. A. FrancisOptimal Sampled-Data Control Systems.New York: Springer, 1995. andzbMATHCrossRefGoogle Scholar
  3. 3.
    T. Chen and B. A. Francis, “Design of multirate filter banks by Hoptimization,”IEEE Trans. Signal Processingvol. SP-43, pp. 2822–2830, 1995.Google Scholar
  4. 4.
    N. J. FliegeMultirate Digital Signal Processing.New York: John Wi­ley, 1994.Google Scholar
  5. 5.
    H. Ishii, Y. Yamamoto, and B. A. Francis, “Sample-rate conversion via sampled-data Hcontrol,” inProc. 38th IEEE Conf. Decision and Controlpp. 3440–3445, 1999.Google Scholar
  6. 6.
    J. D. Johnston, `A filter family designed for use in quadrature mirror filter banks,“ inProc. ICASSPpp. 291–294, 1980.Google Scholar
  7. 7.
    P. P. Khargonekar and Y. Yamamoto, “Delayed signal reconstruction using sampled-data control,” inProc. 35th IEEE Conf. Decision and Controlpp. 1259–1263, 1996.Google Scholar
  8. 8.
    M. Nagahara and Y. Yamamoto “A new design for sample-rate con­verters,” inProc. 39th IEEE Conf. Decision and ControlSydney, 2000.Google Scholar
  9. 9.
    T. W. Parks and C. S. BurrusDigital Filter Design.New York: John-Wiley, 1987.zbMATHGoogle Scholar
  10. 10.
    P. P. VidyanathanMultirate Systems and Filter Banks.Englewood Cliffs: Prentice Hall, 1993.Google Scholar
  11. 11.
    Y. Yamamoto, B. D. O. Anderson and M. Nagahara, “Approximating sampled-data systems with applications to digital redesign,”Proc. 41st IEEE CDCLas Vegas, 2002.Google Scholar
  12. 12.
    Y. Yamamoto, H. Fujioka, and P. P. Khargonekar “Signal reconstruc­tion via sampled-data control with multirate filter banks,” inProc. 36th IEEE Conf. Decision and Controlpp. 3395–3400, 1997.Google Scholar
  13. 13.
    Y. Yamamoto and P. P. Khargonekar, “From sampled-data control to signal processing,” inLearning Control and Hybrid SystemsSpringer Lecture Notes in Control and Information Sciences, vol. 241, 1998, pp. 108–126.Google Scholar
  14. 14.
    Y. Yamamoto, A. G. Madievski, and B. D. O. Anderson, “Approxi­mation of frequency response for sampled-data control systems,”Au­tomaticavol. 35, pp. 729–734, 1999.Google Scholar
  15. 15.
    Y. Yamamoto, M. Nagahara, and H. Fujioka, “Multirate signal re­construction and filter design via sampled-data Hcontrol,” inProc. MTNS 2000Perpignan, France, 2000.Google Scholar
  16. 16.
    A. I. ZayedAdvances in Shannon’s Sampling Theory.Boca Raton: CRC Press, 1993.zbMATHGoogle Scholar
  17. 17.
    G. Zelniker and F. J. TaylorAdvanced Digital Signal Processing: The­ory and Applications.Marcel Dekker, 1994.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Yutaka Yamamoto
    • 1
  • Masaaki Nagahara
    • 1
  1. 1.Department of Applied Analysis and Compiex Dynamical Systems Graduate Shool of InformaticsKyoto UniversityKyotoJapan

Personalised recommendations