Robust Stabilization of Chaos via Delayed Feedback Control

  • Shigeru Yamamoto
  • Toshimitsu Ushio
Part of the Trends in Mathematics book series (TM)


Delayed feedback control (DFC) is a useful method of stabilizing unstable fixed points of chaotic systems without their exact information. In this paper, we present a new recursive method for DFC, which enables us to easily design robust DFC. Since this recursive DFC is essentially dynamic feedback, it can overcome the so-called odd number limitation. Hence, it can robustly stabilize almost all unstable fixed points of chaotic systems.


Chaos control Robust stabilization Delayed feedback control Odd number limitation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    B. R. Barmish, “Necessary and sufficient condition for quadratic stabilizability of an uncertain linear system,”J. Optimiz. Theory Appl.vol. 46, no. 4, pp. 399–408, 1985.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [2]
    S. Bielawski, D. Derozier, and P. Glorieux, “Experimental characterization of unstable periodic orbits by controlling chaos,”Physical Review Avol. 47, no. 2, pp. 2493–2495, 1993.Google Scholar
  3. [3]
    G. Chen and X. Yu, “On time-delayed feedback control of chaotic systems,” IEEE Trans. Circuits and Systems 1, vol. 46, no. 6, pp. 767–772, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    T. Hino, S. Yamamoto, and T. Ushio, “Stabilization of unstable periodic orbits of chaotic discrete-time systems using prediction-based feedback control” in Proc. AFSS 20002000, pp. 347–352.Google Scholar
  5. [5]
    W. Just, T. Bernard, M. Osthermer, E. Reibold, and H. Benner, “Mechanism of time-delayed feedback control,”Phys. Rev. Lett.vol. 78, no. 2, pp. 203–206, 1997.CrossRefGoogle Scholar
  6. [6]
    W. Justet al.“Limits of time-delayed feedback control,”Physics Letters A vol.254, pp. 158–164, 1999.Google Scholar
  7. [7]
    P. P. Khargonekar, I. R. Petersen, and K. Zhou, “Robust stabilization of uncertain linear systems: Quadratic stabilizability andH control theory,“IEEE Trans. Automat. Control, vol. AC-35, no. 3, pp. 356–361, 1990.MathSciNetCrossRefGoogle Scholar
  8. [8]
    H. Kimura, “Pole-assignment by gain output feedback,”IEEE Trans. Automat. Controlvol. AC-20, pp. 509–516, 1975.zbMATHCrossRefGoogle Scholar
  9. [9]
    H. Kimura, “Pole-assignment by output feedback: A long-standing open question,” inProc. 33rd IEEE Conf. Decision and Control1994, pp. 2101–2105.Google Scholar
  10. [10]
    K. Konishi, M. Ishii, and H. Kokame, “Stability of extended delayed feedback control for discrete-time chaotic systems,”IEEE Trans. Circuits and Systems I vol.46, no. 10, pp. 1285–1288, 1999.zbMATHCrossRefGoogle Scholar
  11. [11]
    K. Konishi and H. Kokame, “Observer-based delayed-feedback control for discrete-time chaotic systems,”Physics Letters A, vol.248,pp.359–368, 1998.CrossRefGoogle Scholar
  12. [12]
    H. Nakajima, “On analytical properties of delayed feedback control of chaos,”Physics Letters A vol.232, pp. 207–210, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  13. [13]
    H. Nakajima“Ageneralization of the extended delayed feedback control for chaotic systems,” in Proc. of COC2000, vol. 2, 2000, pp. 209–212.Google Scholar
  14. [14]
    H. Nakajima and Y. Ueda, “Half-period delayed feedback control for dynamical systems with symmetries,”Physical Review Evol. 58, no. 2, pp. 1757–1763, 1998.CrossRefGoogle Scholar
  15. [15]
    E. Ott, C. Grebogi, and J.A.Yorke, “Controlling chaos,”Phys. Rev. Lett.,vol.64, no. 11, pp. 1196–1199, 1990.MathSciNetzbMATHCrossRefGoogle Scholar
  16. [16]
    I. R. Petersen“Astabilization algorithm for a class of uncertain linear systems,” Systems and Control Letters, vol.8, pp. 351–357, 1987.MathSciNetzbMATHCrossRefGoogle Scholar
  17. [17]
    I. R. Petersen and C. V. Hollot“ARiccati equation approach to the stabilization of uncertain linear systems,” Automatica vol.22, no. 4, pp. 397–411, 1986.MathSciNetzbMATHCrossRefGoogle Scholar
  18. [18]
    K. Pyragas, “Continuous control of chaos by self-controlling feedback,”Physics Letters A vol.170, pp. 421–428, 1992.CrossRefGoogle Scholar
  19. [19]
    H. G. Schuster and M. B. Stemmler, “Control of chaos by oscillating feedback,”Physical Review Evol. 56, no. 6, pp. 6410–6417, 1997.CrossRefGoogle Scholar
  20. [20]
    R. E. Skelton, T. Iwasaki, and K. GrigoriadisA Unified Algebraic Approach to Linear Control Design.London: Taylor & Francis, 1998.Google Scholar
  21. [21]
    J. E. S. Socolar, D. W. Sukow, and D. J. Gauthier, “Stabilizing unstable periodic orbits in fast dynamical systems,”Physical Review Evol. 50, pp. 3245–3248, 1994.CrossRefGoogle Scholar
  22. [22]
    T. Ushio, “Chaotic synchronization and controlling chaos based on contraction mappings,”Physics Letters Avol. 198, pp. 14–22, 1995.MathSciNetzbMATHCrossRefGoogle Scholar
  23. [23]
    T. Ushio, “Limitation of delayed feedback control in non-linear discrete-time systems,”IEEE Trans. Circuits and Systems Ivol. 43, no. 9, pp. 815–816, 1996.CrossRefGoogle Scholar
  24. [24]
    T. Ushio and S. Yamamoto, “Delayed feedback control with nonlinear estimation in chaotic discrete-time systems,”Physics Letters Avol. 247, pp. 112–118, 1998.CrossRefGoogle Scholar
  25. [25]
    T. Ushio and S. Yamamoto, “Prediction-based control of chaos,”Physics Letters Avol. 264, pp. 30–35, 1999.MathSciNetzbMATHCrossRefGoogle Scholar
  26. [26]
    D. Xu and S. R. Bishop, “Self-locating control of chaotic systems using Newton algorithm,”Physics Letters Avol. 210, pp. 273–278, 1996.MathSciNetzbMATHCrossRefGoogle Scholar
  27. [27]
    S. Yamamoto, T, Hino, and T. Ushio, “Dynamic delayed feedback controllers for chaotic discrete-time systems,”IEEE Trans. Circuits and Systems Ivol. 48, no. 6, pp. 785–789, 2001.zbMATHCrossRefGoogle Scholar
  28. [28]
    X. Yu, Y. Tian, and G. Chen, “Time delayed feedback control of chaos,” inControlling Chaos and Bifurcations in Engineering SystemsG. Chen Ed.CRC, Chapter 12, pp. 255–274, 1999.Google Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Shigeru Yamamoto
    • 1
  • Toshimitsu Ushio
    • 1
  1. 1.Department of Systems and Human ScienceGraduate School of Engineering Science Osaka UniversityOsakaJapan

Personalised recommendations