Skip to main content

Finite Frequency Characterization of Easily Controllable Plant toward Structure/Control Design Integration

  • Chapter

Part of the book series: Trends in Mathematics ((TM))

Abstract

This paper summarizes the authors’ recent results on finite frequency characterization of easily controllable plants under control effort constraint, the aim being the development of a new approach for plant/control design integration. We first show by a motivating example that the closed-loop bandwidth achievable with a reasonable control effort is closely related to the frequency range for which the plant is high-gain and exhibits positive-realness. We then present an LMI characterization of the finite frequency Kalman—Yakubovich—Popov (KYP) lemma and derive several related conditions. Finally, the conditions for the finite frequency positive-real (FFPR) and the finite frequency high-gain (FFHG) properties are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. D. O. Anderson and S. VongpanitlerdNetwork Analysis and Synthesis.Prentice Hall, 1973.

    Google Scholar 

  2. T. Asai, S. Hara, and T. Iwasaki, “Simultaneous parametric uncertainty modeling and robust control synthesis by LFT scaling,”Automaticavol. 36, pp. 1457–1467, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  3. M. Fan, A. Tits, and J. Doyle, “Robustness in the presence of mixed parametric uncertainty and unmodeled dynamics,”IEEE Trans. Auto. Contr.vol. 36, no. 1, pp. 25–38, 1991.

    Article  MathSciNet  MATH  Google Scholar 

  4. K. M. Grigoriadis and F. Wu “IntegratedH oo plant/controller design via linear matrix inequalities,“ inProc. IEEE Conf. Decision Contr., 1997.

    Google Scholar 

  5. K. M. Grigoriadis, G. Zhu, and R. E. Skelton, “Optimal redesign of linear systems,”ASME J. Dyn. Syst. Meas. Contr.vol. 118, pp. 596–605, 1996.

    Article  Google Scholar 

  6. S. Hara, T. Iwasaki, and F. Shimizu “Finite frequency characterization of easily controllable mechanical systems under control effort constraint,” inProc. IFAC World Congress2002.

    Google Scholar 

  7. T. Iwasaki and S. Hara,“Integrated design of dynamical systems: Requirements for easily controllable structures,” inPre-print of TITech COE/Super Mechano-Systems Workshop’ 991999, pp. 68–72.

    Google Scholar 

  8. T. Iwasaki, S. Hara, and H. Yamauchi “Structure/control design integration with finite frequency positive real property,” inProc. American Contr. Conf.2000.

    Google Scholar 

  9. T. Iwasaki, S. Hara, and H. Yamauchi “Dynamical system design from a control perspective: Finite frequency positive-realness approach,” submitted toIEEE Trans. Auto. Contr.2002.

    Google Scholar 

  10. T. Iwasaki, G. Meinsma, and M. Fu, “Generalized S-procedure and finite frequency KYP lemma,”Mathematical Problems in Engineeringvol. 6, pp. 305–320, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. Iwasaki and G. Shibata, “LPV system analysis via quadratic separator for uncertain implicit systems,”IEEE Trans. Auto. Contr.vol. 46, no. 8, pp. 1195–1208, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  12. I. Kajiwara and A. Nagamatsu, “An approach of optimal design for simultaneous optimization of structure and control systems using sensitivity analysis,”J. SICEvol. 26, no. 10, pp. 1140–1147, 1990.

    Google Scholar 

  13. K. Ono and T. Teramoto, “Design methodology to stabilize the natural modes of vibration of a swing-arm positioning mechanism,”ASME Adv. Info. Storage Syst.vol. 4, pp. 343–359, 1992.

    Google Scholar 

  14. J. Onoda and R. Haftka, “An approach to structure/control simultaneous optimization for large flexible spacecraft,”AIAA Journalvol. 25, no. 8, pp. 1133–1138, 1987.

    Article  Google Scholar 

  15. A. Rantzer, “On the Kalman¡ªYakubovich¡ªPopov lemma,”Sys. Contr. Lett., vol. 28, no. 1, 1996.

    MathSciNet  Google Scholar 

  16. C. Sultan and R. E. Skelton, “Integrated design of controllable tensegrity structures,” in Proc. Int. Mech. Eng. Congress, Dallas, TX, 1997.

    Google Scholar 

  17. J. C. Willems, “Least squares stationary optimal control and the algebraic Riccati equation,”IEEE Trans. Auto. Contr., vol. 16, pp. 621–634, 1971.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hara, S., Iwasaki, T. (2003). Finite Frequency Characterization of Easily Controllable Plant toward Structure/Control Design Integration. In: Hashimoto, K., Oishi, Y., Yamamoto, Y. (eds) Control and Modeling of Complex Systems. Trends in Mathematics. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0023-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0023-9_12

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6577-1

  • Online ISBN: 978-1-4612-0023-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics