Advertisement

Complexity of Systems and Controllers

  • Koji Tsumura
Chapter
  • 303 Downloads
Part of the Trends in Mathematics book series (TM)

Abstract

In this article, we introduce some recent results on the complexity of the model and controller using a unified probabilistic approach to model estimation/selection and controller design. The objective systems are assumed to include unknown random parameters with probability distributions. The first issue is what evaluation function, for model estimation, is reasonable with respect to the controller design. Second, we analyse the effects of the complexity of the parameter distribution model and the class of controller on the expectation of the evaluation functions for model estimation. Finally, we discuss the distribution of systems with a result on a metric structure of a set of analytic functions.

Keywords

Model estimation Model selection Complexity Information criterion Robust control E-entropy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Akaike, “A new look at the statistical model identification,”IEEE Trans. Automatic Control, vol. AC-19, no. 6, pp. 716–723, 1974.MathSciNetGoogle Scholar
  2. 2.
    T. Asai, S. Hara, and T. Iwasaki, “Simultaneous modeling and synthesis for robust control by LFT scaling,” inPreprints of 13th IFAC World Congress1996, pp. 309–314.Google Scholar
  3. 3.
    J. Chen, G. Gu, and C. N. Nett, “Worst case identification of continuous time systems via interpolation,”Automaticavol. 30, no. 12, pp. 1825–1837, 1994.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    T. Asai, S. Hara, and T. Iwasaki, “Simultaneous modeling and synthesis for robust control by LFT scaling,” inPreprints of 13th IFAC World Congress1996, pp. 309–314.Google Scholar
  5. 5.
    L. Giarre, B. Z. Kacewicz, and M. Milanese, “Model quality evaluation in set membership identification,”Automatica, vol.33, no. 6, pp. 1133–1139, 1997.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    I. J. Good and R. A. Gaskins, “Nonparametric roughness penalties for probability densities,”Biometrika, vol.58, no. 2, pp. 255–277, 1971.MathSciNetzbMATHGoogle Scholar
  7. 7.
    G. C. Goodwin, M. Gevers, and B. Ninness, “Quantifying the error in estimated transfer functions with application to model order selection,”IEEE Trans.Automatic Control,vol.AC-37, pp. 913–928, 1992.MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    P. J. Green, “Penalized likelihood for general semi-parametric regression models,” International Statistical Review, vol. 55, no. 3, pp. 245–259, 1987.Google Scholar
  9. 9.
    A. J. Helmicki, C. A. Jacobson, and C. N. Nett, “Control oriented system identification: A worst-case/deterministic approach inH am “ IEEETrans. Automatic Control, vol. AC-36, no. 10, pp. 1163–1176, 1991.MathSciNetCrossRefGoogle Scholar
  10. 10.
    E. Hewitt and K. StrombergReal and Abstract Analysis.New York: Springer-Verlag, 1975.zbMATHGoogle Scholar
  11. 11.
    S. Konishi and G. Kitagawa, “Generalized information criteria in model selection,” Biometrika, vol. 83, no. 4, no. 875–890, 1996.MathSciNetzbMATHGoogle Scholar
  12. 12.
    R. L. Kosut, M. K. Lau, and S. P. Boyd, “Set-membership identification of systems with parametric and nonparametric uncertainty,”IEEE Trans. Automatic Control vol.AC-37, no. 7, pp. 929–941, 1992.MathSciNetGoogle Scholar
  13. 13.
    S. Kullback, Information Theory and Statistics. Mathematical Statistics, New York: John Wiley & Sons, Inc., 1959.Google Scholar
  14. 14.
    A. Lasota and M. C. MackeyChaos Fractals and Noise: Stochastic Aspects of Dynamics2nd ed. Applied Mathematical Sciences, vol. 97, New York: Springer-Verlag, 1995.Google Scholar
  15. 15.
    H. Linhart and W. ZucchiniModel Selection.New York: John Wiley & Sons, Inc., 1986.Google Scholar
  16. 16.
    G. G. LorentzApproximation of Functions.New York: Chelsea Publishing Company, 1986.zbMATHGoogle Scholar
  17. 17.
    M. Milanese and A. Vicino, “Optimal estimation theory for dynamic systems with set membership uncertainty: An overview,”Automaticavol. 27, pp. 997–1009, 1991.MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    A. Pinkus, n-Widths in Approximation Theory. Berlin: Springer-Verlag, 1985.CrossRefGoogle Scholar
  19. 19.
    J. Rissanen, “Universal coding, information, prediction and estimation,”IEEE Trans. Information Theory vol. IT-30, pp. 629–636, 1984.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    G. Schwarz, “Estimating the dimension of a model,”The Annals of Statisticsvol. 6, no. 2, pp. 461–464, 1978.MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    K. Takeuchi, “Distribution of information statistics and criteria for adequacy of models” (in Japanese)Mathematical Sciencesvol. 153, pp. 12–18, 1976.Google Scholar
  22. 22.
    V. M. Tichomirov, “Diameters of sets in function spaces,” Uspehi Mat. Nauk, Russian Math Surveys, vol. 15, pp. 75–111, 1960.Google Scholar
  23. 23.
    K. Tsumura, “Information criterion for model selection with controller design,” inProceedings of the 12th IFAC Symposium on System IdentificationSanta Barbara, 2000.Google Scholar
  24. 24.
    K. Tsumura“Metric structure of a set of analytic functions,” in Proceedings of the 30th SICE Symposium on Control Theory, 2001.Google Scholar
  25. 25.
    K. Tsumura, “Unification of modeling, estimation and controller design,” inProceedings of the 40th Conference on Decision and Control2001, pp. 1995–2000.Google Scholar
  26. 26.
    K. Tsumura, “Unification of modeling, estimation and controller design,” submitted for publication.Google Scholar
  27. 27.
    K. Tsumura and H. Kimura“Criterion for selection of model and controller design based on IO data,” in Proceedings of the 39th Conference on Decision and Control2000, pp. 2837–2842.Google Scholar
  28. 28.
    K. Tsumura and S. Shin“Simultaneous modeling and data-distribution-dependent robust control system design,” in Preprints of the 11th IFAC Symposium on System Identification, Kitakyushu1997, pp. 129–134.Google Scholar
  29. 29.
    A. G. VitushkinTheory of the Transmission and Processing of Information.New York: Pergamon, 1961.Google Scholar
  30. 30.
    G. Zames, “On the metric complexity of causal linear systems:e-entropy and E-dimension for continuous time,”IEEE Trans. Automatic Controlvol. AC-24, no. 2, pp. 222–230, 1979.MathSciNetGoogle Scholar
  31. 31.
    G. Zames and J. G. Owen, “A note on metric dimension and feedback in distance time,”IEEE Trans. Automatic Controlvol. AC-38, no. 4, pp. 664–667, 1993.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Koji Tsumura
    • 1
  1. 1.Department of Information Physics and ComputingThe University of TokyoTokyoJapan

Personalised recommendations