Skip to main content

On Exact Solutions of Linear PDEs

  • Chapter

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 52))

Abstract

The role of exact fundamental solutions in the study of linear PDEs is illustrated by several examples among equations of mixed type, subelliptic and degenerate elliptic equations, and hyperbolic equations. In particular, we derive exact fundamental solutions for the degenerate hyperbolic operators \( \partial _t^2 - {\partial ^{2l}}\vartriangle \) in \( {{\mathbb{R}}^{{2p}}} \times \mathbb{R} \) for arbitrary1 p =1, 2,….

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Aaráo, A transport equation of mixed type, J. Diff. Equations 150 (1998), 188–202.

    Article  MATH  Google Scholar 

  2. R. Bader and P. Germain, Solutions élémentaires de certaines équations aux dérivées partielles du type mixte, Bull. Soc. Math. France 81 (1953), 145–174.

    MathSciNet  MATH  Google Scholar 

  3. M. S. Baouendi and C. Goulaouic, Non-analytic hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc. 78 (1972), 483–486.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Beals, A note on fundamental solutions, Comm. P. D. E. 24 (1999), 369–376.

    Article  MathSciNet  MATH  Google Scholar 

  5. R. Beals, B. Gaveau, and R C. Greiner, The Green function of model step two hypoelliptic operators and the analysis of certain tangential Cauchy Riemann complexes, Advances in Math. 121 (1996), 288–345.

    Article  MathSciNet  MATH  Google Scholar 

  6. R. Beals, B. Gaveau, and R C. Greiner. On a geometric formula for the fundamental solutions of subelliptic laplacians, Math. Nach. 181 (1996), 81–163.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Beals, B. Gaveau, and P.C. Greiner, Complex Hamiltonian mechanics and parametrices for subelliptic Laplacians I, II, III, Bull. Sci. Math. 121 (1997), 1–36; 97–149; 195–259.

    Google Scholar 

  8. R. Beals, B. Gaveau, and R C. Greiner, Uniform hypoelliptic Green’s functions, J. Math. Pures Appl. 77 (1998), 209–248.

    MathSciNet  MATH  Google Scholar 

  9. R. Beals, B. Gaveau, and R C. Greiner, Green’s functions for some highly degenerate elliptic operators, J. Funct. Anal. 165 (1999), 407–429.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Beals, B. Gaveau, R C. Greiner, and Y. Kannai, Exact fundamental solutions for a class of degenerate elliptic operators, Comm. R D. E. 24 (1999), 719–742.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. Beals and P. C. Greiner, “Calculus on Heisenberg Manifolds,” Annals of Math. Studies no. 119, Princeton Univ. Press, Princeton, NJ, 1988.

    Google Scholar 

  12. A. Bellaïche and J.-J. Risler, “Subriemannian Geometry,” Progress in Mathematics 144, Birkhäuser, Basel, 1996.

    Google Scholar 

  13. L. Boutet de Monvel, A. Grigis, and B. Helfer, Paramétrixes d’opérateurs pseudo-differentiels à caractéristiques multiples, Astérisque 34–35 (1976), 93–121.

    Google Scholar 

  14. L. Boutet de Monvel and F. Treves, On a class pseudodifferential operators with double characteristics, Inventiones Math. 24 (1974), 1–34.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. Bove and D. S. Tartakoff, Optimal non-isotropic Gevrey exponents for sums of squares of vector fields, Comm P D E 22 (1997), 1263–1282.

    MathSciNet  MATH  Google Scholar 

  16. S. Chandrasekhar, Stochastic problems in physics and astronomy, Rev. Mod. Phys. 15 (1943), 1–89.

    Article  MathSciNet  MATH  Google Scholar 

  17. ] M. Christ, Certain sums of squares of vector fields fail to be analytic hypoelliptic, Comm P. D. E. 16 (1991), 1695–1707.

    Article  Google Scholar 

  18. M. Christ, Intermediate Gevrey exponents occur, Comm. P. D. E. 22 (1997), 225–235.

    Article  MathSciNet  Google Scholar 

  19. J. Dadok and R. Harvey, The fundamental solution for the Kohn-Laplacian qb on the sphere in C“, Math Annalen 244 (1979), 89–104.

    Article  MathSciNet  MATH  Google Scholar 

  20. R. M. Davis, On a regular Cauchy problem for the Euler-Poisson-Darboux equation, Ann. Mat. Pura Appl. 42 (1956), 205–226.

    Article  MathSciNet  MATH  Google Scholar 

  21. A. Debiard and B. Gaveau, Analysis on root systems, Can. J. Math. 39 (1987), 1281–1404.

    MathSciNet  MATH  Google Scholar 

  22. S. Delache, Calcul des solutions élémentaires des opérateurs de TricomiClairaut auto-adjoints, strictement hyperboliques, Bull. Soc. Math. France 97 (1969), 5–79.

    MathSciNet  MATH  Google Scholar 

  23. S. Delache and J. Leray, Calcul de la solution élémentaire de l’opérateur d’Euler-Poisson-Darboux et de l’opérateur de Tricomi-Clairaut hyperbolique d’ordre 2, Bull. Soc. Math. France 99 (1971), 313–336.

    MathSciNet  MATH  Google Scholar 

  24. M. Derridj and D. S. Tartakoff, Local analyticity for qb and the 8-Neumann problem at certain weakly pseudo-convex boundary points, Comm P D E. 13 (1988), 1847–1868.

    Article  MathSciNet  Google Scholar 

  25. M. Derridj and C. Zuily, Regularité analytique et Gevrey pour des classes d’opérateurs élliptiques paraboliques dégénérés du second ordre, Astérisque 2–3 (1973), 309–336.

    MathSciNet  Google Scholar 

  26. G. Folland, A fundamental solution for a subelliptic operator, Bull. Amer. Math. Soc. 79 (1973), 373–376.

    Article  MathSciNet  MATH  Google Scholar 

  27. G. Folland and E. M. Stein, Estimates for the 8b-complex and analysis on the Heisenberg group, Comm Pure Appl. Math. 27 (1974), 429–522.

    Article  MathSciNet  MATH  Google Scholar 

  28. B. Gaveau, Principe de moindre action, propagation de la chaleur et estimées sous-elliptiques sur certains groupes nilpotents, Acta Math. 139 (1977), 95153.

    Article  MathSciNet  Google Scholar 

  29. M. Gevrey, Sur la nature analytique des solutions des équations aux dérivées partielles, Ann. Sci. École Norm. Sup. 35 (1918), 129–189.

    MathSciNet  MATH  Google Scholar 

  30. D. Gourdin, Systèmes faiblement hyperboliques à caracteristiques multiples, CRAS 278 (1974), 269–272.

    MathSciNet  MATH  Google Scholar 

  31. P. C. Greiner, A fundamental solution for a nonelliptic partial differential operator, Can. J. Math. 31 (1979), 1107–1120.

    MathSciNet  MATH  Google Scholar 

  32. P. C. Greiner, D. Holcman, and Y. Kannai, Wave kernels related to second order operators, preprint.

    Google Scholar 

  33. A. Grigis and J. Sjöstrand, Front d’ondes analytique et sommes de carrés de champs de vecteurs, Duke Math. J. 52 (1985), 35–51.

    Article  MathSciNet  MATH  Google Scholar 

  34. J. Hadamard, “Le Problème de Cauchy et les Équations aux Dérivées Partielles Linéaires Hyperboliques,” Hermann, Paris 1932.

    Google Scholar 

  35. Y. Hamada, On the propagation of singularities of the solution of the Cauchy problem, Publ. RIMS Kyoto Univ. 6, no. 2 (1970), 357–384.

    Article  MathSciNet  MATH  Google Scholar 

  36. Y. Hamada, J. Leray, and C. Wagschal, Systèmes d’équations aux dérivées partielles à caractéristiques multiples: problème de Cauchy ramifié: hyerbolicité partielle, J. Math. Pures Appl. 55 (1976), 297–352.

    MathSciNet  Google Scholar 

  37. N. Hanges and A. Himonas, Singular solutions for some sums of squares of vector fields, Comm. R D. E. 16 (1991), 1503–1511.

    MathSciNet  MATH  Google Scholar 

  38. G. Herglotz, Über die Integration linearer partieller Dîfferentielgleichungen mit konstanten Koeffizienten, I, II, III, Bericht. Sächs. Akad. Wiss. zu Leipzig, Math. Phys. Kl. 78 (1926), 93–126, 2870–318; 80 (1928), 69–116.

    Google Scholar 

  39. L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147–171.

    Article  MathSciNet  MATH  Google Scholar 

  40. A. Hulanicki, The distribution of energy in the Brownian motion in the Gaussian field and analytic-hypoellipticity of certain subelliptic operators on the Heisenberg group, Studia Math. 56 (1976), 165–173.

    MathSciNet  MATH  Google Scholar 

  41. F. John, “Plane Waves and Spherical Means Applied to Partial Differential Equations.” Interscience, New York, 1955.

    Google Scholar 

  42. A. Klingler, New derivation of the Heisenberg kernel, Comm. PDE 22 (1997), 2051–2060.

    Article  MathSciNet  MATH  Google Scholar 

  43. A. N. Kolmogorov, Zufällige Bewegungen, Acta Math. 35 (1934), 116–117.

    MathSciNet  MATH  Google Scholar 

  44. J. Leray, Les solutions élémentaires d’une équation aux dérivées partielles à coefficients constants, C. R. Acad. Sci. Paris, Sér. I, 234 (1952), 1112–1114.

    MathSciNet  MATH  Google Scholar 

  45. J. Leray, Intégrales abéliennes et solutions élémentaires des équations hyperboliques, Colloque CBRM de Bruxelles ‘Equations aux Dérivées Partielles, Thorne and Gauthier-Villars, 1954, pp. 37–43.

    Google Scholar 

  46. J. Leray, Le problème de Cauchy pour une équation linéaire à coefficients polynomiaux, C. R. Acad. Sci. Paris, Sér. I, 242 (1956), 953–957.

    MathSciNet  MATH  Google Scholar 

  47. J. Leray and Y. Ohya, Systémes linéaires hyperboliques non stricts, Colloque CBRM de Liège d’Analyse fonctionelle, Thorne and Gauthier-Villars, 1965, pp. 105–144.

    Google Scholar 

  48. ] A. I. Nachman, The wave equation on the Heisenberg group, Comm P. D. E. 6 (1982), 675–714.

    Article  Google Scholar 

  49. Y. Ohya, Le problème de Cauchy pour les équations hyperboliques à caractéristiques multiples, J, Math. Soc. Japan 16 (1964), 268–286.

    Article  MathSciNet  MATH  Google Scholar 

  50. O. A. Oleinik and E. V. Radkevic, “Second Order Equations with Non-Negative Characteristic Form,” Moscow, 1971; English translation, Plenum, New York, London, 1973.

    Book  Google Scholar 

  51. M. Riesz, L’Intégrale de Riemann-Liouville et le problème de Cauchy, Acta Math. 81, (1949), 1–223.

    Article  MathSciNet  MATH  Google Scholar 

  52. D. Schiltz, J. Vaillant, and C. Wagschal, Problème de Cauchy ramifié: racine caractéristique double ou triple en involution, J. Math. Pure Appl. 61 (1982), 423–443.

    MathSciNet  MATH  Google Scholar 

  53. J. Sjöstrand, Parametrices for pseudodifferential operators with multiple characteristics, Ark. för Mat. 12 (1974), 85–130.

    Article  MATH  Google Scholar 

  54. D. S. Tartakoff, On the local Gevrey and quasi-analytic hypoellipticity for qb, Comm. Pure Appl. Math. 26 (1973), 699–712.

    Article  MathSciNet  Google Scholar 

  55. D. S. Tartakoff, Local analytic hypoellipticity for qb on npn-degenerate Cauchy-Riemann manifolds, Proc. Nat. Acad. Sci. U. S. A. 75 (1978), 3027–3028.

    Article  MathSciNet  MATH  Google Scholar 

  56. F. Treves, Analytic hypoellipticity of a class of pseudodifferential operators with double characteristics and applications to the 8-Neumann problem, Comm P. D. E. 3 (1978), 475–642.

    Article  MathSciNet  MATH  Google Scholar 

  57. C. Wagschal, Problème de Cauchy analytique à données méromorphes, J. Math. Pure Appl. 51 (1972), 373–397.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Beals, R. (2003). On Exact Solutions of Linear PDEs. In: Kajitani, K., Vaillant, J. (eds) Partial Differential Equations and Mathematical Physics. Progress in Nonlinear Differential Equations and Their Applications, vol 52. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4612-0011-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4612-0011-6_2

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4612-6572-6

  • Online ISBN: 978-1-4612-0011-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics