Advertisement

The Behaviors of Singular Solutions of Partial Differential Equations in Some Class in the Complex Domain

  • Sunao Ōuchi
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 52)

Abstract

LetL(z Z )be a linear partial differential operator with holomorphic coefficients in a neighborhoodUofz= 0 in Cd+1andKbe a nonsingular complex hypersurface. Letu(z) be a solution of the equationL(z Z )u(z) =0, which has singularities onK.In general there are many singular homogeneous solutions. The purpose of the present paper is to introduce a class of partial differential operators and study of the behaviors of homogeneous solutions ofL(z 3)belonging to this class, by restricting the growth properties of singularities onK.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baouendi, M.S. and Goulaouic, C., Cauchy problems with characteristic initial hypersurface, Comm. Pure Appl. Math. 26(1973), 455–475.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Y. Hamada, The singularities of the solutions of the Cauchy problemPubl. RIMS Kyoto Univ. 5(1969), 21–40.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Y. Hamada, J. Leray, et C. Wagschal, Système d’équation aux derivées partielles à caractéristique multiples; problème de Cauchy ramifié; hyperbolicité partielleJ. Math. Pures Appl. 55(1976), 297–352.MathSciNetGoogle Scholar
  4. 4.
    J. Leray, Uniformisation de la solution du problème linéare analytique de Cauchy près de la variété qui porte les données de Cauchy (Problème de Cauchy I)Bull. Soc. Math. de France 85(1957) 389–429.MathSciNetzbMATHGoogle Scholar
  5. 5.
    T. Mandai, The method of Frobenius to Fuchsian partial differential equationsJ. Math. Soc. Japan 52(2000), 645–672.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    M. Kashiwara et P. Schapira, Problème de Cauchy pour les systemes microdifferentiels dans le domain complexeInv. Math. 46(1978), 17–38.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    S. ōuchi, Asymptotic behaviour of singular solutions of linear partial differential equations in the complex domainJ. Fac. Sci. Univ. Tokyo 27(1980), 1–36.zbMATHGoogle Scholar
  8. 8.
    S. ōuchi, An integral representation of singular solutions of linear partial differential equations in the complex domainJ. Fac. Sci. Univ. Tokyo 27(1980), 37–85.zbMATHGoogle Scholar
  9. 9.
    S. ōuchi, Existence of singular solutions and null solutions for linear partial differential operatorsJ. Fac. Sci. Univ. Tokyo 32(1985), 457–498.zbMATHGoogle Scholar
  10. 10.
    S. ōuchi, Singular solutions with asymptotic expansion of linear partial differential equations in the complex domainPubl. RIMS Kyoto Univ. 34(1998), 291–311.zbMATHCrossRefGoogle Scholar
  11. 11.
    S. ōuchi, Growth property and slowly increasing behavior of singular solutions of linear partial differential equations in the complex domainJ. Math. Soc. Japan 52(2000), 767–792.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    S. ōuchi, Asymptotic expansion of singular solutions and the characteristic polygon of linear partial differential equations in the complex domainPubl. RIMS Kyoto Univ. 36(2000), 457–482.zbMATHCrossRefGoogle Scholar
  13. 13.
    J. Persson, Singular holomorphic solutions of linear partial differential equations with holomorphic coefficients and nonanalytic solutions with analytic coefficientsAsterisque 89–90 analytic solutions of partial differential equations (Trento 1981)Soc. Math. France, 89–90.Google Scholar
  14. 14.
    H. Tahara,Fuchsian type equations and Fuchsian hyperbolic equationsJapan. J. Math. 5(1979) 245–347.MathSciNetzbMATHGoogle Scholar
  15. 15.
    C. Wagschal, Problème de Cauchy analytique à données méromorphesJ. Math. Pures Appl. 51(1972), 375–397.MathSciNetGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Sunao Ōuchi
    • 1
  1. 1.Department of MathematicsSophia UniversityTokyoJapan

Personalised recommendations