Advertisement

Spherically Symmetric Solutions of the Compressible Euler Equation

  • Kiyoshi Mizohata
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 52)

Abstract

We shall discuss the existence theorem of global weak solutions with spherical symmetry of the Euler equation and of the relativistic Euler equation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    X. Ding, G. Chen and P. Luo, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics, (I), (II), Acta Math. Sci. 5 (1985), 483–500; 501–540.MathSciNetGoogle Scholar
  2. 2.
    X. Ding, G. Chen and P. Luo, Convergence of the Lax-Friedrichs scheme for isentropic gas dynamics, (III), Acta Math. Sci. 6 (1986), 75–120.Google Scholar
  3. 3.
    R. DiPerna, Convergence of the viscosity method for isentropic gas dynamics, Commun. Math. Phys. 91, (1983), 1–30.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    J Glimm, Solutions in the large for nonlinear hyperbolic systems of equa­tions, Comm Pure Appl. Math. 18 (1965), 697–715.MathSciNetzbMATHGoogle Scholar
  5. 5.
    C. H. Hsu, S. S. Lin and T. Makino, On spherically symmetric solutions of the relativistic Euler equation, preprint.Google Scholar
  6. 6.
    C. H. Hsu and T. Makino, Spherically Symmetric Solutions to the Compress­ible Euler equation with an asymptotic y-law, preprint.Google Scholar
  7. 7.
    P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Reg. Conf. Lecture 11, Philadelphia, 1973.Google Scholar
  8. 8.
    T. Makin, K. Mizohata and S. Ukai, The global weak solutions of the com­pressible Euler equation with spherical symmetry, Japan J. Indust. Appl. Math. 9, (1992), 431–449.MathSciNetCrossRefGoogle Scholar
  9. 9.
    T. Makino, K. Mizohata and S. Ukai, The global weak solutions of the com­pressible Euler equation with spherical symmetry II, Japan J. Indust. Appl. Math. 11, 1994, 417–426.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    K. Mizohata, Equivalence of Eulerian and Lagrangian weak solutions of the compressible Euler equation with spherical symmetry, Kodai Mathematical Journal 17, (1994), 69–81.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    K. Mizohata, Global solutions to the relativistic Euler equation with spherical symmetry, Japan J. Indust. Appl. Math. 14, (1997), 125–157.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    T. Nishida, Global solutions for an initial boundary value problem of a quasi-linear hyperbolic system, Proc. Japan Acad. 44 (1968), 642–646.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    J. Smoller and B. Temple, Global solutions of the relativistic Euler equations, Comm Math. Phys. 156 (1993), 67–99.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2003

Authors and Affiliations

  • Kiyoshi Mizohata
    • 1
  1. 1.Faculty of EngineeringDoshisha UniversityKyotababe, KyotoJapan

Personalised recommendations