Skip to main content

Nonlinear Automotive, Aerospace, Marine and Robotics Applications

  • Chapter
  • First Online:
Nonlinear Industrial Control Systems

Abstract

The nonlinear control applications in this chapter are mainly for faster systems that provide new challenges when limited computational power is available. The need for nonlinear control in robotics is demonstrated in a robot manipulator control design. This is followed by two application problems in marine systems involving ship roll stabilization and ship positioning , where computational power is less of an issue but where nonlinearities and constraints are significant. The diesel engine and the sightline servo-system control problems involve both significant nonlinearities and have greater restrictions on the computational power available. The chapter illustrates the importance of the state-dependent and LPV modelling philosophies, and the value of simple nonlinear controller structures, when processing speed and complexity is an issue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hrovat D, Di Cairano S, Tseng HE, Kolmanovsky IV (2012) The development of model predictive control in automotive industry: a survey. In: IEEE international conference on control applications, Dubrovnik, Croatia

    Google Scholar 

  2. Deori L, Garatti S, Prandini M (2015) A model predictive control approach to aircraft motion control. In: American control conference, Palmer House Hilton, Chicago

    Google Scholar 

  3. Slotine JJE, Li W (1991) Applied nonlinear control. Prentice-Hall, Englewood Cliff, New Jersey

    Google Scholar 

  4. Asada H, Slotine JJE (1986) Robot analysis and control. Wiley, New York

    Google Scholar 

  5. Grimble MJ, Ordys AW (2001) Non-linear predictive control for manufacturing and robotic applications. In: IEEE conference on methods and models in automation and robotics, Poland

    Google Scholar 

  6. Hickey NA, Grimble MJ, Johnson MA, Katebi MR, Wood D (1995) Fin roll control system design. In: IFAC conference, control applications in marine systems, Trondheim, Norway

    Google Scholar 

  7. Hickey NA, Johnson MA, Katebi MR, Grimble M J (1999) PID controller optimization for fin roll stabilization. In: IEEE International Conference on Control Applications, Kohala Coast Island of Hawaii, pp 1785–1790

    Google Scholar 

  8. Katebi MR, Hickey NA, Grimble MJ (2000) Evaluation of fin roll stabiliser controller design. IFAC Manoeuvring and Control of Marine Craft, Aalborg, Denmark

    Book  Google Scholar 

  9. Hickey NA, Grimble MJ, Johnson MA, Katebi MR, Melville R (1997) Robust fin roll stabilisation of surface ships. In: 36th IEEE conference on decision and control, San Diego, California, pp 4225–4230

    Google Scholar 

  10. Grimble MJ, Katebi MR, Zhang Y (1993) H∞ based ship fin rudder-roll stabilisation design. In: 10th Ship control symposium, Ottawa, Canada

    Google Scholar 

  11. Fossen TI (1994) guidance and control of ocean vehicles. Wiley, Chichester

    Google Scholar 

  12. Morgan MJ (1978) Dynamic positioning of offshore vessels. Petroleum Publishing Company

    Google Scholar 

  13. Balchen JG, Jenssen NA, Saelid S (1976) Dynamic positioning using Kalman filtering and optimal control theory. Automation in offshore oil field operation, pp 183–188

    Google Scholar 

  14. Balchen JG, Jenssen NA, Mathisen E, Sælid S (1980) A dynamic positioning system based on Kalman filtering and optimal control. Model Ident Control 1:135–163

    Article  Google Scholar 

  15. Sælid S, Jenssen NA, Balchen JG (1983) Design and analysis of a dynamic positioning system based on Kalman filtering and optimal control. IEEE Trans Autom Control 28:331–339

    Article  Google Scholar 

  16. Grimble MJ, Patton RJ, Wise DA (1979) The design of dynamic ship positioning control systems using extended Kalman filtering technique. IEEE Oceans 79 conference, San Diego, California, pp 488–497

    Google Scholar 

  17. Grimble MJ, Patton RJ, Wise DA (1980) Use of Kalman filtering techniques in dynamic ship positioning systems. IEEE Proc 127(3):93–102

    Article  Google Scholar 

  18. Grimble MJ, Patton RJ (1980) The design of dynamic ship positioning control systems using stochastic optimal control theory. Optimal Control Appl Methods 1:167–202

    Article  Google Scholar 

  19. Fung PT, Grimble MJ (1983) Dynamic ship positioning using a self-tuning Kalman filter. IEEE Trans Autom Control 28:339–350

    Article  Google Scholar 

  20. Pierson WJ, Moskowitz L (1963) A proposed spectral form for fully developed wind seas based on the similarity theory of S. A. Kitaigorodsku. US Naval Oceanographic Office

    Google Scholar 

  21. Grimble MJ, Johnson MA (1988) Optimal control and stochastic estimation, vols I and II. Wiley, Chichester

    Google Scholar 

  22. Yamamoto I, Daigo K, Matsuura M, Yamaguchi Y, Tanabe A, Shimizaki K (1998) A dynamic position system for FPSOs with fuzzy control logic based on a nonlinear programming algorithm. In: 17th ASME international conference on offshore mechanics and arctic engineering

    Google Scholar 

  23. Johannesen E, Egeland O (1993) Dynamic positioning with wave filtering using a passive controller structure. In: IEEE 32nd conference on decision and control, San Antonio, Texas, pp 1903–1908

    Google Scholar 

  24. Fossen T, Grovlen A (1998) Nonlinear output feedback control of dynamically positioned ships using vectorial observer backstepping. IEEE Trans Control Syst Technol 6(1):121–128

    Article  Google Scholar 

  25. Vermillion C, Butts K, Reidy K (2010) Model predictive engine torque control with real-time driver-in-the-loop simulation results. In: American control conference, Baltimore, pp 1459–1464

    Google Scholar 

  26. Stefanopoulou A, Kolmanovsky I, Freudenberg J (2000) Control of variable geometry turbocharged diesel engines for reduced emissions. IEEE Trans Control Syst Technol:733–745

    Article  Google Scholar 

  27. Jankovic M, Jankovic M, Kolmanovsky I (1998) Robust nonlinear controller for turbocharged diesel engines. In: American control conference, Philadelphia, pp 1389–1394

    Google Scholar 

  28. Kolmanovsky V, Moraal PE, van Nieuwstadt MJ, Stefanopoulou AG (1997) Issues in modelling and control of intake flow in variable geometry turbocharged engines. In: 18th IFIP conference on system modelling and optimization, Detroit

    Google Scholar 

  29. Herceg M, Raff T, Allgöwer F (2006) Nonlinear model predictive control of a turbocharged diesel engine. In: IEEE international conference on control applications, Munich, Germany, pp 2766–2771

    Google Scholar 

  30. Jung M, Glover K (2003) Control-oriented linear parameter-varying modelling of a turbocharged diesel engine. IEEE conference on control applications, Istanbul, Turkey, pp 155–160

    Google Scholar 

  31. Jung M, Glover K (2003) Calibratable linear parameter-varying modelling of a turbocharged diesel engine. In: IEEE international conference on control applications, Istanbul, pp 155–160

    Google Scholar 

  32. Jung M, Glover K (2006) Calibratable linear parameter-varying modelling of a turbocharged diesel engine. IEEE Trans Control Syst Technol 14(1):45–62

    Article  Google Scholar 

  33. Mohammadpour J, Grigoriadis K, Franchek M, Wang Y, Haskara I (2010) LPV decoupling and input shaping for control of diesel engines. In: American control conference, Baltimore, pp 1477–1482

    Google Scholar 

  34. Van Nieuwstadt MJ, Kolmanovsky IV, Moraal PE, Stefanopoulou A, Jankovicegr M (2000) VGT control schemes: experimental comparison for a high-speed diesel engine. IEEE Trans Control Syst 20:63–67

    Article  Google Scholar 

  35. Vermillion C, Sun J, Butts K (2007) Model predictive control allocation for over-actuated systems: stability and performance. In: IEEE conference on decision and control, New Orleans, pp 1251–1256

    Google Scholar 

  36. Jankovic M, Jankovic M, Kolmanovsky I (2000) Constructive lyapunov control design for turbocharged diesel engines. IEEE Trans Control Syst Technol 8(2):288–299

    Article  Google Scholar 

  37. Wahlstrom J, Eriksson L, Nielsen L (2010) EGR-VGT control and tuning for pumping work minimization and emission control. IEEE Trans Control Syst Technol 18(4):993–1003

    Article  Google Scholar 

  38. Banning R, Johnson MA, Grimble MJ (1997) Advanced control design for marine diesel engine propulsion systems. J Dyn Syst Meas Contr 119(2):167–174

    Article  Google Scholar 

  39. Majecki P, Javaherian H, Grimble MJ (2009) Supervisory multiple-model approach to multivariable lambda and torque control of SI engines. In: IFAC workshop on engine and powertrain control, simulation and modeling IFP, Rueil-Malmaison, France, vol 42, No. 26, pp 24–31

    Article  Google Scholar 

  40. Majecki P, van der Molen GM, Grimble MJ, Haskara I, Hu Y, Chang CF (2015) Real-time predictive control for si engines using linear parameter-varying models. In: 5th IFAC conference on nonlinear model predictive control, Seville, and IFAC-papers on-line, vol 48, No. 23, pp 94–101

    Article  Google Scholar 

  41. Majecki P, Grimble MJ, Haskara I, Hu Y, Chang CF (2017) Total engine optimization and control for SI engines using linear parameter-varying models. American Control Conference, Seattle

    Google Scholar 

  42. Martin P, Brignall N, MacDonald M, Grimble MJ (2008) Constrained predictive control of a servo-driven tracking turret. UKACC international conference on control, University of Manchester

    Google Scholar 

  43. Anderson D, McGookin M, Brignall N (2009) Fast model predictive control of the nadir singularity in electro-optic systems. J Guid Control Dyn 32(2):626–632

    Article  Google Scholar 

  44. Savvidis P, Anderson D, Grimble MJ (2010) Application of nonlinear generalised minimum variance to the nadir problem in 2-axis gimbal pointing and stabilization. In: SPIE conference on defence, security, and sensing, Orlando, Florida

    Google Scholar 

  45. Savvidis P (2017) Nonlinear control: an LPV nonlinear predictive generalised minimum variance perspective, Ph.D. Thesis, Department of Electronic and Electrical Engineering, University of Strathclyde, Glasgow

    Google Scholar 

  46. Huzmezan M, Maciejowski J (1998) Reconfiguration and scheduling in flight using quasi-LPV high-fidelity models and MBPC control. In: American control conference, Philadelphia, pp 3649–3653

    Google Scholar 

  47. Marcos, Balas GJ (2004) Development of linear-parameter varying models for aircraft. J Guid Control Dyn 27(2):218–228

    Article  Google Scholar 

  48. Wu S-F, Grimble MJ, Breslin SG (1998) Introduction to quantitative feedback theory for lateral robust flight control systems design. Control Eng Pract 6(7):805–828

    Article  Google Scholar 

  49. Owens DH (2016) Iterative learning control, an optimization paradigm. AIC Series Monograph, Springer

    Google Scholar 

  50. Grimble MJ, Zhang Y, Katebi MR (1993) H∞ based ship autopilot design. In: 10th ship symposium, Canada

    Google Scholar 

  51. Desanj DS, Grimble MJ, Katebi MR (1997) State-space adaptive H∞ controller with application to a ship control system. Institute of Meas. and Control, vol 19, No. 3

    Article  Google Scholar 

  52. Dohna DC, Desanj DS, Katebi MR, Grimble MJ (1998) H∞ adaptive controllers for autopilot applications. Int J Adaptive Control Signal Process 132:623–648

    Google Scholar 

  53. Brahma A, Upadhyay D, Serrani A, Rizzoni G (2004) Modelling, identification and state estimation of diesel engine torque and NOx dynamics in response to fuel quantity and timing excitations. In: American control conference, Boston, pp 2166–2171

    Google Scholar 

  54. Ponti F, Ravaglioli V, Moro D, Serra G (2013) MFB50 on-board estimation methodology for combustion control. Control Eng Pract 1821–1829

    Article  Google Scholar 

  55. Maruyama T, Shimura T, Ejiri A, Ikai Y, Shimotani K (2011) Model predictive control applied to a diesel engine air-path system with dead time. In: SICE annual conference, Waseda University, Tokyo, Japan

    Google Scholar 

  56. Youssef A, Grimble MJ, Ordys A, Dutka A, Anderson D (2003) Robust nonlinear flight predictive control. In: European control conference, Cambridge, pp 2487–2492

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Grimble .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimble, M.J., Majecki, P. (2020). Nonlinear Automotive, Aerospace, Marine and Robotics Applications. In: Nonlinear Industrial Control Systems. Springer, London. https://doi.org/10.1007/978-1-4471-7457-8_15

Download citation

Publish with us

Policies and ethics