Skip to main content

Nonlinear Estimation Methods: Polynomial Systems Approach

  • Chapter
  • First Online:
Nonlinear Industrial Control Systems

Abstract

Attention now turns to nonlinear filtering problems that are related to some of the minimum variance control laws discussed previously. Two forms of the estimator are described that have a nonlinear minimum variance form. The first has the virtue of simplicity and the second is useful since it can be related to Wiener or Kalman filtering when the system is linear. They can both include nonlinear communication channel dynamics in the problem construction. This is the most useful learning point and is a feature not usually considered. The channel equalization design example illustrates the useful structure of the polynomial-based solution and the computations involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bonivento C, Grimble MJ, Giovanini L, Monatri M, Paoli A (2007) State and parameter estimation approach to monitoring AGR nuclear core. In: Picci G, Valcher M (eds) A tribute to Antonio Lepschy. University of Padova, Chapter 13, pp 31–56

    Google Scholar 

  2. Charleston S, Azimi-Sadjadi MR (1996) Reduced order Kalman filtering for the enhancement of respiratory sounds. IEEE Trans Biomed Eng 43(4): 421–424

    Article  Google Scholar 

  3. Charleston-Villalobos S, Dominguez-Robert LF, Gonzalez-Camarena R, Aljama-Corrales AT (2006) Heart sounds interference cancellation in lungs sounds. In: International conference of the IEEE engineering medicine and biology society, vol 1, New York, pp 1694–1697

    Google Scholar 

  4. Cortes S, Jane R, Torres A, Fiz JA, Morera J (2006) Detection and adaptive cancellation of heart sound interference in tracheal sounds. IEEE Eng Med Biol Soc N Y 1:2860–2863

    Google Scholar 

  5. Kailath T (1974) A view of three decades of linear filtering theory. IEEE Trans Inf Theory 20(2):146–181

    Article  MathSciNet  MATH  Google Scholar 

  6. Wiener N (1949) Extrapolation, interpolation and smoothing of stationary time series, with engineering applications. Technology Press and Wiley (issued in February 1942 as a classified US National Defence Research Council Report), New York

    Google Scholar 

  7. Kalman RE (1960) A new approach to linear filtering and prediction problems. J Basic Eng 35–45

    Article  MathSciNet  Google Scholar 

  8. Kalman RE (1961) New methods in Wiener filtering theory. In: Symposium on engineering applications of random function theory and probability, pp 270–388

    Google Scholar 

  9. Shaked U (1979) A transfer function approach to the linear discrete stationary filtering and the steady-state discrete optimal control problems. Int J Control 29(2):279–291

    Article  MathSciNet  MATH  Google Scholar 

  10. Åström KJ (1979) Introduction to stochastic control theory. Academic Press, London

    Google Scholar 

  11. Grimble MJ (2007) NMV optimal estimation for nonlinear discrete-time multi-channel systems. In: 46th IEEE conference on decision and control, New Orleans, pp 4281–4286

    Google Scholar 

  12. Grimble MJ, Naz SA (2010) Optimal minimum variance estimation for nonlinear discrete-time multichannel systems. IET Signal Process J 4(6): 618–629

    Article  MathSciNet  Google Scholar 

  13. Ali-Naz S, Grimble MJ (2009) Design and implementation of nonlinear minimum variance filters. Int J Adv Mechatron Syst Interscience 1(4)

    Article  Google Scholar 

  14. Haykin S (2001) Communication systems, 4th edn. Wiley

    Google Scholar 

  15. Grimble MJ (1995) Multichannel optimal linear deconvolution filters and strip thickness estimation from gauge measurements. ASME J Dyn Syst Meas Control 117:165–174

    Article  MathSciNet  MATH  Google Scholar 

  16. Grimble MJ (2006) Robust industrial control: optimal design approach for polynomial systems. Wiley, Chichester

    Google Scholar 

  17. Grimble MJ (2005) Nonlinear generalised minimum variance feedback, feedforward and tracking control. Automatica 41:957–969

    Article  MathSciNet  MATH  Google Scholar 

  18. Grimble MJ, Kucera V (1996) Polynomial methods for control systems design. Springer, London

    Google Scholar 

  19. Grimble MJ (1985) Polynomial systems approach to optimal linear filtering and prediction. IJC 41(6):1545–1564

    Article  MathSciNet  MATH  Google Scholar 

  20. Kucera V (1979) Discrete linear control. Wiley, Chichester

    Google Scholar 

  21. Pinter S, Fernando XN (2007) Equalization of multiuser wireless CDMA downlink considering transmitter nonlinearity using Walsh codes. EURASIP J Wireless Commun Netw:1–9

    Google Scholar 

  22. Gomez JC, Baeyens E (2003) Hammerstein and Wiener model identification using rational orthonormal bases. Lat Am Appl Res 33(4):449–456

    Google Scholar 

  23. Gómez JC, Baeyens E (2004) Identification of block-oriented nonlinear systems using orthonormal bases. J Process Control 14(6):685–697

    Article  Google Scholar 

  24. Celka P, Bershad NJ, Vesin JM (2001) Stochastic gradient identification of polynomial Wiener systems: analysis and application. IEEE Trans Sig Proc 49(2):301–313

    Article  MATH  Google Scholar 

  25. Bershad NJ, Celka P, McLaughlin S (2001) Analysis of stochastic gradient identification of Wiener-Hammerstein systems for nonlinearities with Hermite polynomial expansions. IEEE Trans Signal Process 49(5):1060–1072

    Article  Google Scholar 

  26. Celka P, Bershad NJ, Vesin JM (2000) Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems. IEEE Trans Signal Proc 48(6):1820–1825

    Article  MathSciNet  MATH  Google Scholar 

  27. Grimble MJ, Jukes KA, Goodall DP (1984) Nonlinear filters and operators and the constant gain extended Kalman filter. IMA J Math Cont Inf 1:359–386

    Article  MATH  Google Scholar 

  28. Kwakernaak H, Sivan R (1991) Modern signals and systems. Prentice Hall

    Google Scholar 

  29. Moir TJ (1986) Optimal deconvolution smoother. IEE Proc Pt D 133(1):13–18

    Article  MATH  Google Scholar 

  30. Grimble MJ (1996) H∞ optimal multichannel linear deconvolution filters, predictors and smoothers. Int J Control 63(3):519–533

    Article  MathSciNet  MATH  Google Scholar 

  31. Berggren P, Perkovic A (1996) Cylinder individual lambda feedback control in an SI engine. M.Sc. Thesis, Linkoping

    Google Scholar 

  32. Grimble MJ, Ali Naz S (2009) Nonlinear minimum variance estimation for discrete-time multi-channel systems. IEEE Trans Signal Proc 57(7):2437–2444

    Article  MathSciNet  MATH  Google Scholar 

  33. Liu X, Sun JW, Liu D (2006) Nonlinear multifunctional sensor signal reconstruction based on total least squares. J Phys Conf Ser 48:281–286

    Google Scholar 

  34. Grimble MJ (1984) LQG multivariable controllers: minimum variance interpretation for use in self-tuning systems. Int J Control 40(4):831–842

    Article  MathSciNet  MATH  Google Scholar 

  35. Ahlen A, Sternad M (1991) Wiener filter design using polynomial equations. IEEE Trans Signal Process 39:2387–2399

    Article  MATH  Google Scholar 

  36. Anderson BDO, Moore JB (1979) Optimal filtering. Prentice Hall Inc., New Jersey

    Google Scholar 

  37. Chi CY, Mendel JM (1984) Performance of minimum variance deconvolution filter. IEEE Trans Acoust Speed Signal Process 32(60):1145–1152

    Google Scholar 

  38. Grimble MJ (2001) Industrial control systems design. Wiley, Chichester

    Google Scholar 

  39. Grimble MJ (2004) Data driven weighted estimation error benchmarking for estimators and condition monitoring systems. IEE Proc Control Theory Appl 151(4):511–521

    Article  Google Scholar 

  40. Sternad M, Ahlén A (1996) H2 design of model-based nominal and robust discrete time filters. In: Grimble MJ, Kucera V (eds) A polynomial approach to H2 and H∞ robust control design, Chapter 5. Springer, London

    Google Scholar 

  41. Grimble MJ (1996) Robust filter design for uncertain systems defined by both hard and soft bounds. IEEE Trans Signal Process 44(5):1063–1071

    Article  Google Scholar 

  42. Choi J, Bouchard M, Yeap TH, Kwon O (2004) A derivative-free Kalman filter for parameter estimation of recurrent neural networks and its applications to nonlinear channel equalization. In: Fourth ISCS symposium on engineering of intelligent systems, Madeira, Portugal

    Google Scholar 

  43. Chen S, Gibson GJ, Mulgrew B, McLaughlin S (1990) Adaptive equalization of finite nonlinear channels using multilayer perceptrons. Signal Process 20:107–119

    Article  Google Scholar 

  44. Ataslar B (2004) Robust flow control for data communication networks. Ph.D. Dissertation, Anadolu University, Eskisehir, Turkey

    Google Scholar 

  45. Grimble MJ (1987) H∞ design of optimal linear filters. In: Byrnes CI, Martin CF, Saeks RE (eds) MTNS conference, Phoenix, Arizona, 1988. North Holland, Amsterdam, pp 553–540

    Google Scholar 

  46. Grimble MJ, ElSayed A (1990) Solution of the H∞ optimal linear filtering problem for discrete-time systems. IEEE Trans Signal Process 38(7):1092–1104

    Google Scholar 

  47. Yaesh I, Shaked U (1992) Transfer function approach to the problems of discrete-time systems: H∞ optimal linear control and filtering. IEEE Trans Autom Control 36(11):1264–1271

    Google Scholar 

  48. Shaked U (1990) H∞ minimum error state estimation of linear stationary processes. IEEE Trans Autom Control 35(5):554–558

    Google Scholar 

  49. Aliyu MDS, Boukas EK (2008) Discrete-time mixed H2/H∞ nonlinear filtering. American control conference, June 11–13, Seattle, Washington

    Google Scholar 

  50. Grimble MJ (1984) Wiener and Kalman filters for systems with random parameters. IEEE Trans 29(6):552–554

    Article  MathSciNet  MATH  Google Scholar 

  51. Alkaya A, Grimble MJ (2015) Non-linear minimum variance estimation for fault detection systems. Trans Inst Meas Control 37(6):805–812

    Article  Google Scholar 

  52. Chen J, Patton RJ, Zhang HY (1996) Design of unknown input observers and robust fault detection filters. Int J Control 63(1):85–105

    Article  MathSciNet  MATH  Google Scholar 

  53. Ali Naz S, Grimble MJ, Majecki P (2011) Multi-channel restricted structure estimators for linear and nonlinear systems. IET J Signal Process 5(4):407–417

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Grimble .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Grimble, M.J., Majecki, P. (2020). Nonlinear Estimation Methods: Polynomial Systems Approach. In: Nonlinear Industrial Control Systems. Springer, London. https://doi.org/10.1007/978-1-4471-7457-8_12

Download citation

Publish with us

Policies and ethics