Big Data, Cloud Computing, and Internet of Things

  • Ke-Lin DuEmail author
  • M. N. S. Swamy


The era of big data has arrived. Big data and cloud computing go hand-in-hand. Internet of things (IoT) has resulted in a hyper-world consisting of the social, cyber, and physical worlds, with data as a bridge. These topics are closely related to data science and are introduced in this chapter.


  1. 1.
    Aguilera, M. K., Strom, R. E., Sturman, D. C., Astley, M., & Chandra, T. D. (1999). Matching events in a content-based subscription system. In Proceedings of the 18th Annual ACM Symposium on Principles of Distributed Computing (pp. 53–61). Atlanta, GA.Google Scholar
  2. 2.
    Amokrane, A., Zhani, M. F., Langar, R., Boutaba, R., & Pujolle, G. (2013). Greenhead: Virtual data center embedding across distributed infrastructures. IEEE Transactions on Cloud Computing, 1(1), 36–49.Google Scholar
  3. 3.
    Andreev, K., & Racke, H. (2004). Balanced graph partitioning. In Proceedings of the 16th Annual ACM Symposium on Parallelism in Algorithms and Architectures (pp. 120–124). Barcelona, Spain.Google Scholar
  4. 4.
    Bessani, A., Correia, M., Quaresma, B., Andre, F., & Sousa, P. (2011). DepSky: Dependable and secure storage in a cloud-of-clouds. In Proceedings of the 6th European Conference on Computer Systems (pp. 31–46).Google Scholar
  5. 5.
    Bhatotia, P., Wieder, A., Rodrigues, R., Acar, U. A., & Pasquin, R. (2011). Incoop: Mapreduce for incremental computations. In Proceedings of the 2nd ACM Symposium on Cloud Computing (Article No. 7, 14 pp.). Cascais, Portugal.Google Scholar
  6. 6.
    Bilal, K., Manzano, M., Khan, S. U., Calle, E., Li, K., & Zomaya, A. Y. (2013). On the characterization of the structural robustness of data center networks. IEEE Transactions on Cloud Computing, 1(1), 64–77.Google Scholar
  7. 7.
    Bu, Y., Howe, B., Balazinska, M., & Ernst, M. D. (2010). Haloop: Efficient iterative data processing on large clusters. Proceedings of the VLDB Endowment, 3(1), 285–296.Google Scholar
  8. 8.
    Chen, W., & Wassell, I. J. (2011). Energy efficient signal acquisition in wireless sensor networks: A compressive sensing framework. In Proceedings of the 6th International Symposium on Wireless and Pervasive Computing (pp. 1–6). Hong Kong, China.Google Scholar
  9. 9.
    Davis, D., Pilz, G., & Zhang, A. (Eds.). (2012). Cloud Infrastructure Management Interface (CIMI) Primer, DSP2027, v. 1.0.1. Distributed Management Task Force.Google Scholar
  10. 10.
    Dean, J., & Ghemawat, S. (2004). MapReduce: Simplified data processing on large clusters. In Proceedings of the 6th Symposium on Operating System Design and Implementation (pp. 137–150). San Francisco, CA.Google Scholar
  11. 11.
    Dean, J., & Ghemawat, S. (2008). MapReduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.Google Scholar
  12. 12.
    Dinh, T. T. A., Liu, R., Zhang, M., Chen, G., Ooi, B. C., & Wang, J. (2018). Untangling blockchain: A data processing view of blockchain systems. IEEE Transactions on Knowledge and Data Engineering, 30(7), 1366–1385.Google Scholar
  13. 13.
    Dong, Y., Yang, X., Li, X., Li, J., Tian, K., & Guan, H. (2010). High performance network virtualization with SR-IOV. In Proceedings of the 16th International Conference on High-Performance Computer Architecture (pp. 1–10). Bangalore, India.Google Scholar
  14. 14.
    Eagle, N., & Pentland, A. (2006). Reality mining: Sensing complex social systems. Personal and Ubiquitous Computing, 10(4), 255–268.Google Scholar
  15. 15.
    Ekanayake, J., Pallickara, S., & Fox, G. (2008). MapReduce for data intensive scientific analyses. In Proceedings of the IEEE 4th International Conference on eScience (pp. 277–284). Indianapolis, IN.Google Scholar
  16. 16.
    Fiege, L., Gartner, F. C., Kasten, O., & Zeidler, A. (2003). Supporting mobility in content-based publish/subscribe middleware. In Proceedings of the ACM/IFIP/USENIX 2003 International Conference on Middleware (pp. 103–122). Alzburg, Austria.Google Scholar
  17. 17.
    Ganti, R., Ye, F., & Lei, H. (2011). Mobile crowdsensing: Current state and future challenges. IEEE Communications Magazine, 49(11), 32–39.Google Scholar
  18. 18.
    Gulisano, V., Jimenez-Peris, R., Patino-Martinez, M., Soriente, C., & Valduriez, P. (2012). Streamcloud: An elastic and scalable data streaming system. IEEE Transactions on Parallel and Distributed Systems, 23(12), 2351–2365.Google Scholar
  19. 19.
    Guo, B., Chen, C., Zhang, D., Yu, Z., & Chin, A. (2016). Mobile crowd sensing and computing: When participatory sensing meets participatory social media. IEEE Communications Magazine, 54(2), 131–137.Google Scholar
  20. 20.
    Hacigumus, H., Iyer, B., Li, C., & Mehrotra, S. (2002). Executing SQL over encrypted data in the database-service-provider model. In Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 216–227). Madison, WI.Google Scholar
  21. 21.
    Huang, T., Lan, L., Fang, X., An, P., Min, J., & Wang, F. (2015). Promises and challenges of big data computing in health sciences. Big Data Research, 2(1), 2–11.Google Scholar
  22. 22.
    Ingersoll, G. (2009). Introducing apache mahout: Scalable, commercial-friendly machine learning for building intelligent applications. IBM Corporation.Google Scholar
  23. 23.
    Isard, M., Budiu, M., Yu, Y., Birrell, A., & Fetterly, D. (2007). Dryad: Distributed data-parallel programs from sequential building blocks. In Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer Systems (pp. 59-72). Lisbon, Portugal.Google Scholar
  24. 24.
    Jayalath, C., Stephen, J., & Eugster, P. (2014). Universal cross-cloud communication. IEEE Transactions on Cloud Computing, 2(2), 103–116.zbMATHGoogle Scholar
  25. 25.
    Jin, H., Wang, X., Wu, S., Di, S., & Shi, X. (2015). Towards optimized fine-grained pricing of IaaS cloud platform. IEEE Transactions on Cloud Computing, 3(4), 436–448.Google Scholar
  26. 26.
    Koponen, T., Casado, M., Gude, N., Stribling, J., Poutievski, L., Zhu, M., et al. (2010). Onix: A distributed control platform for large-scale production networks. In Proceedings of the 9th USENIX Symposium on Operating Systems Design and Implementation (pp. 1–6). Vancouver, Canada.Google Scholar
  27. 27.
    Kreutz, D., Ramos, F. M., & Verissimo, P. (2013). Towards secure and dependable software-defined networks. In Proceedings of the 2nd ACM SIGCOMM Workshop on Hot Topics in Software Defined Networking (pp. 55–60). Hong Kong, China.Google Scholar
  28. 28.
    Lin, J., Yu, W., Zhang, N., Yang, X., Zhang, H., & Zhao, W. (2017). A Survey on Internet of things: Architecture, enabling technologies, security and privacy, and applications. IEEE Internet of Things Journal, 4(5), 1125–1142.Google Scholar
  29. 29.
    Malewicz, G., Austern, M. H., Bik, A. J., Dehnert, J. C., Horn, I., Leiser, N., et al. (2010). Pregel: A system for large-scale graph processing. In Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 135–146). Indianapolis, IN.Google Scholar
  30. 30.
    Mashayekhy, L., Nejad, M. M., & Grosu, D. (2015). Cloud federations in the sky: Formation game and mechanism. IEEE Transactions on Cloud Computing, 3(1), 14–27.Google Scholar
  31. 31.
    Melnik, S., Gubarev, A., Long, J., Romer, G., Shivakumar, S., Tolton, M., et al. (2010). Dremel: Interactive analysis of web-scale datasets. In Proceedings of the 36th International Conference on Very Large Data Bases (pp. 330–339).Google Scholar
  32. 32.
    Mitton, N., Papavassiliou, S., Puliafito, A., & Trivedi, K. S. (2012). Combining cloud and sensors in a smart city environment. EURASIP Journal on Wireless Communications and Networking, 2012(247), 1–10.Google Scholar
  33. 33.
    Mont, M. C., McCorry, K., Papanikolaou, N., & Pearson, S. (2012). Security and privacy governance in cloud computing via SLAS and a policy orchestration service. In Proceedings of the 2nd International Conference on Cloud Computing and Services Science (pp. 670–674). Porto, Portugal.Google Scholar
  34. 34.
    Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system.
  35. 35.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., et al. (2009). The Eucalyptus open-source cloud computing system. Proceedings of the 9th IEEE/ACM International Symposium on Cluster Computing and the Grid (pp. 124–131). Shanghai, China.Google Scholar
  36. 36.
    Patel, M., Hu, Y., Hédé, P., Joubert, J., Thornton, C., Naughton, B., et al. (2014). Mobile-edge computing—Introductory technical white paper. White paper, Mobile-Edge Computing (MEC) Industry Initiative.Google Scholar
  37. 37.
    Rochwerger, B., Breitgand, D., Epstein, A., Hadas, D., Loy, I., Nagin, K., et al. (2011). Reservoir—When one cloud is not enough. Computer, 44(3), 44–51.Google Scholar
  38. 38.
    Sandholm, T., & Lai, K. (2010). Dynamic proportional share scheduling in Hadoop. In Proceedings of the 15th International Workshop on Job Scheduling Strategies for Parallel Processing, LNCS (Vol. 6253, pp. 110–131). Atlanta, GA. Berlin: Springer.Google Scholar
  39. 39.
    Schad, J., Dittrich, J., & Quiane-Ruiz, J.-A. (2010). Runtime measurements in the cloud: Observing, analyzing, and reducing variance. Proceedings of the VLDB Endowment, 3, 460–471.Google Scholar
  40. 40.
    Sempolinski, P., & Thain, D. (2010). A comparison and critique of Eucalyptus, OpenNebula and Nimbus. In Proceedings of IEEE 2nd International Conference on Cloud Computing Technology and Science (pp. 417–426). Indianapolis, IN.Google Scholar
  41. 41.
    Sotomayor, B., Montero, R. S., Llorente, I. M., & Foster, I. (2008). Capacity leasing in cloud systems using the OpenNebula engine. In Proceedings of Workshop on Cloud Computing and its Applications. Chicago, IL.Google Scholar
  42. 42.
    Vaquero, L. M., Celorio, A., Cuadrado, F., & Cuevas, R. (2015). Deploying large-scale datasets on-demand in the cloud: Treats and tricks on data distribution. IEEE Transactions on Cloud Computing, 3(2), 132–144.Google Scholar
  43. 43.
    Xiang, L., Luo, J., & Rosenberg, C. (2013). Compressed data aggregation: Energy-efficient and high-fidelity data collection. IEEE/ACM Transactions on Networking, 21(6), 1722–1735.Google Scholar
  44. 44.
    Xin, R. S., Rosen, J., Zaharia, M., Franklin, M. J., Shenker, S., & Stoica, I. (2013). Shark: SQL and rich analytics at scale. In Proceedings of ACM SIGMOD International Conference on Management of Data (pp. 13–24). New York.Google Scholar
  45. 45.
    Xiong, J., Liu, X., Yao, Z., Ma, J., Li, Q., Geng, K., et al. (2014). A secure data self-destructing scheme in cloud computing. IEEE Transactions on Cloud Computing, 2(4), 448–458.Google Scholar
  46. 46.
    Yan, Z., Ding, W., Yu, X., Zhu, H., & Deng, R. H. (2016). Deduplication on encrypted big data in cloud. IEEE Transactions on Big Data, 2(2), 138–150.Google Scholar
  47. 47.
    Yao, Y., Tai, J., Sheng, B., & Mi, N. (2015). LsPS: A job size-based scheduler for efficient task assignments in Hadoop. IEEE Transactions on Cloud Computing, 3(4), 411–424.Google Scholar
  48. 48.
    Zaharia, M., Borthakur, D., Sarma, J. S., Elmeleegy, K., Shenker, S., & Stoica, I. (2009). Job scheduling for multi-user mapreduce clusters. Technical Report UCB/EECS-2009-55, University of California, Berkeley.Google Scholar
  49. 49.
    Zhang, Q., Zhani, M. F., Yang, Y., Boutaba, R., & Wong, B. (2015). PRISM: Fine-grained resource-aware scheduling for MapReduce. IEEE Transactions on Cloud Computing, 3(2), 182–194.Google Scholar
  50. 50.
    Zhang, Y., Chen, S., Wang, Q., & Yu, G. (2015). i\(^2\)MapReduce: Incremental MapReduce for mining evolving big data. IEEE Transactions on Knowledge and Data Engineering, 27(7), 1906–1919.Google Scholar
  51. 51.
    Zhang, Y., Gao, Q., Gao, L., & Wang, C. (2012). iMapReduce: A distributed computing framework for iterative computation. Journal of Grid Computing, 10(1), 47–68.Google Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.Xonlink Inc.HangzhouChina

Personalised recommendations