Advertisement

Introduction to Fuzzy Sets and Logic

  • Ke-Lin DuEmail author
  • M. N. S. Swamy
Chapter

Abstract

In many soft sciences (e.g., psychology, sociology, ethology), scientists provide verbal descriptions and explanations of various phenomena based on observations. Fuzzy logic provides the most suitable tool for verbal computation. It is a paradigm for modeling the uncertainty in human reasoning, and is a basic tool for machine learning and expert systems. This chapter introduces fuzzy sets and logic. Some associated topics on reasoning and granular computing are also described.

References

  1. 1.
    Aamodt, A., & Plaza, E. (1994). Case-based reasoning: Foundational issues, methodological variations, and system approaches. AI Communications, 7(1), 39–59.Google Scholar
  2. 2.
    Bede, B., & Rudas, I. J. (2011). Approximation properties of fuzzy transforms. Fuzzy Sets and Systems, 180(1), 20–40.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Buckley, J. J. (1989). Fuzzy complex numbers. Fuzzy Sets and Systems, 33, 333–345.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Buckley, J. J. (1993). Sugeno type controllers are universal controllers. Fuzzy Sets and Systems, 53, 299–304.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Buckley, J. J., Hayashi, Y., & Czogala, E. (1993). On the equivalence of neural nets and fuzzy expert systems. Fuzzy Sets and Systems, 53, 129–134.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Buckley, J. J., & Eslami, E. (2002). An introduction to fuzzy logic and fuzzy sets. Heidelberg: Physica-Verlag.zbMATHCrossRefGoogle Scholar
  7. 7.
    Davis, J. G., & Ganeshan, S. (2009). Aversion to loss and information overload: An experimental investigation. In Proceedings of the International Conference on Information Systems (Paper no. 11). Phoenix, AZ.Google Scholar
  8. 8.
    Dick, S. (2005). Toward complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 13(3), 405–414.CrossRefGoogle Scholar
  9. 9.
    Dubois, D., Esteva, F., Garcia, P., Godo, L., de Mantaras, R. L., & Prade, H. (1997). Fuzzy modelling of case-based reasoning and decision. In D. B. Leake & E. Plaza (Eds.), Case-based reasoning research and development (Vol. 1266, pp. 599–610). LNAI. Berlin: Springer.Google Scholar
  10. 10.
    Ferrari-Trecate, G., & Rovatti, R. (2002). Fuzzy systems with overlapping Gaussian concepts: Approximation properties in Sobolev norms. Fuzzy Sets and Systems, 130, 137–145.MathSciNetzbMATHCrossRefGoogle Scholar
  11. 11.
    Figueiredo, M., Gomides, F., Rocha, A., & Yager, R. (1993). Comparison of Yager’s level set method for fuzzy logic control with Mamdani and Larsen methods. IEEE Transactions on Fuzzy Systems, 2, 156–159.CrossRefGoogle Scholar
  12. 12.
    Finnie, G., & Sun, Z. (2003). A logical foundation for the case-based reasoning cycle. International Journal of Intelligent Systems, 18, 367–382.zbMATHCrossRefGoogle Scholar
  13. 13.
    Jang, J. S. R., & Sun, C. I. (1993). Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Transactions on Neural Networks, 4(1), 156–159.CrossRefGoogle Scholar
  14. 14.
    Leake, D. (1996). Case-based reasoning: Experiences, lessons, and future direction (p. 420). Menlo Park: AAAI Press/MIT Press.Google Scholar
  15. 15.
    Li, H. X., & Chen, C. L. P. (2000). The equivalence between fuzzy logic systems and feedforward neural networks. IEEE Transactions on Neural Networks, 11(2), 356–365.CrossRefGoogle Scholar
  16. 16.
    Karnik, N. N., & Mendel, J. M. (1999). Type-2 fuzzy logic systems. IEEE Transactions on Fuzzy Systems, 7(6), 643–658.zbMATHCrossRefGoogle Scholar
  17. 17.
    Kosko, B. (1992). Fuzzy system as universal approximators. In Proceedings of IEEE International Conference on Fuzzy Systems (pp. 1153–1162). San Diego, CA.Google Scholar
  18. 18.
    Kosko, B. (1997). Fuzzy engineering. Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  19. 19.
    Kreinovich, V., Nguyen, H. T., & Yam, Y. (2000). Fuzzy systems are universal approximators for a smooth function and its derivatives. International Journal of Intelligent Systems, 15, 565–574.zbMATHCrossRefGoogle Scholar
  20. 20.
    Mamdani, E. H. (1974). Application of fuzzy algorithms for control of a simple dynamic plant. Proceedings of the IEEE, 12(1), 1585–1588.Google Scholar
  21. 21.
    Mantas, C. J., & Puche, J. M. (2008). Artificial neural networks are zero-order TSK fuzzy systems. IEEE Transactions on Fuzzy Systems, 16(3), 630–643.CrossRefGoogle Scholar
  22. 22.
    Mas, M., Monserrat, M., Torrens, J., & Trillas, E. (2007). A survey on fuzzy implication functions. IEEE Transactions on Fuzzy Systems, 15(6), 1107–1121.CrossRefGoogle Scholar
  23. 23.
    Mendel, J. M., Liu, F., & Zhai, D. (2009). \(\alpha \)-plane representation for type-2 fuzzy sets: Theory and applications. IEEE Transactions on Fuzzy Systems, 17(5), 1189–1207.Google Scholar
  24. 24.
    Mitra, S., & Hayashi, Y. (2000). Neuro-fuzzy rule generation: Survey in soft computing framework. IEEE Transactions on Neural Networks, 11(3), 748–768.CrossRefGoogle Scholar
  25. 25.
    Molodtsov, D. (1999). Soft set theory–first results. Computers & Mathematics with Applications, 37, 19–31.MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Mondal, B., & Raha, S. (2011). Similarity-based inverse approximate reasoning. IEEE Transactions on Fuzzy Systems, 19(6), 1058–1071.CrossRefGoogle Scholar
  27. 27.
    Pawlak, Z. (1982). Rough sets. International Journal of Computer and Information Sciences, 11, 341–356.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Pawlak, Z. (1991). Rough sets–Theoretical aspects of reasoning about data. Dordrecht: Kluwer.zbMATHGoogle Scholar
  29. 29.
    Pedrycz, W. (1998). Shadowed sets: Representing and processing fuzzy sets. IEEE Transactions on Systems, Man, and Cybernetics, Part B, 28, 103–109.CrossRefGoogle Scholar
  30. 30.
    Pedrycz, W. (2009). From fuzzy sets to shadowed sets: Interpretation and computing. International Journal of Intelligent Systems, 24, 48–61.zbMATHCrossRefGoogle Scholar
  31. 31.
    Perfilieva, I. (2006). Fuzzy transforms: Theory and applications. Fuzzy Sets and Systems, 157, 993–1023.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    Peters, G. (2011). Granular box regression. IEEE Transactions on Fuzzy Systems, 19(6), 1141–1152.CrossRefGoogle Scholar
  33. 33.
    Plaza, E., Esteva, F., Garcia, P., Godo, L., & de Mantaras, R. L. (1996). A logical approach to case-based reasoning using fuzzy similarity relations. Information Sciences, 106, 105–122.MathSciNetzbMATHCrossRefGoogle Scholar
  34. 34.
    Ramot, D., Friedman, M., Langholz, G., & Kandel, A. (2003). Complex fuzzy logic. IEEE Transactions on Fuzzy Systems, 11(4), 450–461.CrossRefGoogle Scholar
  35. 35.
    Ramot, D., Milo, R., Friedman, M., & Kandel, A. (2002). Complex fuzzy sets. IEEE Transactions on Fuzzy Systems, 10(2), 171–186.CrossRefGoogle Scholar
  36. 36.
    Takagi, T., & Sugeno, M. (1985). Fuzzy identification of systems and its applications to modelling and control. IEEE Transactions on Systems Man and Cybernetics, 15(1), 116–132.zbMATHCrossRefGoogle Scholar
  37. 37.
    Tanaka, H. (1987). Fuzzy data analysis by possibilistic linear models. Fuzzy Sets and Systems, 24, 363–375.MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Tanaka, K., & Sugeno, M. (1992). Stability analysis and design of fuzzy control systems. Fuzzy Sets and Systems, 45, 135–150.MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Tsang, E. C. C., Chen, D., Yeung, D. S., Wang, X.-Z., & Lee, J. W. T. (2008). Attributes reduction using fuzzy rough sets. IEEE Transactions on Fuzzy Systems, 16(5), 1130–1141.CrossRefGoogle Scholar
  40. 40.
    Wagner, C., & Hagras, H. (2010). Toward general type-2 fuzzy logic systems based on \(z\)Slices. IEEE Transactions on Fuzzy Systems, 18(4), 637–660.Google Scholar
  41. 41.
    Wang, L. X. (1992). Fuzzy systems are universal approximators. In Proceedings of IEEE International Conference on Fuzzy Systems (pp. 1163–1170). San Diego, CA.Google Scholar
  42. 42.
    Wang, S., & Lu, H. (2003). Fuzzy system and CMAC network with B-spline membership/basis functions are smooth approximators. Soft Computing, 7, 566–573.zbMATHCrossRefGoogle Scholar
  43. 43.
    Yen, J. (1999). Fuzzy logic–A modern perspective. IEEE Transactions on Knowledge and Data Engineering, 11(1), 153–165.CrossRefGoogle Scholar
  44. 44.
    Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338–353.MathSciNetzbMATHCrossRefGoogle Scholar
  45. 45.
    Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning–I, II, III. Information Sciences, 8, 199–249, 301–357; 9, 43–80.MathSciNetzbMATHCrossRefGoogle Scholar
  46. 46.
    Zadeh, L. A. (1978). Fuzzy sets as a basis for theory of possibility. Fuzzy Sets and Systems, 1, 3–28.MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.Xonlink Inc.HangzhouChina

Personalised recommendations