Skip to main content

Independent Component Analysis

  • Chapter
  • First Online:
Neural Networks and Statistical Learning

Abstract

Blind source separation is a basic topic in signal and image processing. Independent component analysis is a basic solution to blind source separation. This chapter introduces blind source separation, with importance attached to independent component analysis. Some methods related to source separation for time series are also mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akaho, S., Kiuchi, Y., & Umeyama, S. (1999). MICA: Multidimensional independent component analysis. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) (pp. 927–932). Washington, DC.

    Google Scholar 

  2. Almeida, L. B. (2003). MISEP—Linear and nonlinear ICA based on mutual information. Journal of Machine Learning Research, 4, 1297–1318.

    MATH  Google Scholar 

  3. Almeida, M., Schleimer, J.-H., Bioucas-Dias, J., & Vigario, R. (2011). Source separation and clustering of phase-locked subspaces. IEEE Transactions on Neural Networks, 22(9), 1419–1434.

    Article  Google Scholar 

  4. Almeida, M., Vigario, R., & Bioucas-Dias, J. (2011). Phase locked matrix factorization. In Proceedings of the 19th European Signal Processing Conference (EUSIPCO) (pp. 1728–1732). Barcelona, Spain.

    Google Scholar 

  5. Amari, S. I., Cichocki, A., & Yang, H. (1996). A new learning algorithm for blind signal separation. In D. S. Touretzky, M. C. Mozer, & M. E. Hasselmo (Eds.), Advances in neural information processing systems (Vol. 8, pp. 757–763). Cambridge, MA: MIT Press.

    Google Scholar 

  6. Amari, S., Douglas, S. C., Cichocki, A., & Yang, H. H. (1997). Multichannel blind deconvolution and equalization using the natural gradient. In Proceedings of the IEEE Workshop on Signal Processing Advances in Wireless Communications (pp. 101–104).

    Google Scholar 

  7. Amari, S. (1998). Natural gradient works efficiently in learning. Neural Computation, 10(2), 251–276.

    Article  Google Scholar 

  8. Amari, S. (1999). Natural gradient learning for over- and under-complete bases in ICA. Neural Computation, 11, 1875–1883.

    Article  Google Scholar 

  9. Armstrong, B. C., Ruiz-Blondet, M. V., Khalifian, N., Kurtz, K. J., Jin, Z., & Laszlo, S. (2015). Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics. Neurocomputing, 166, 59–67.

    Article  Google Scholar 

  10. Astakhov, S. A., Stogbauer, H., Kraskov, A., & Grassberger, P. (2006). Monte Carlo algorithm for least dependent non-negative mixture decomposition. Analytical Chemistry, 78(5), 1620–1627.

    Article  Google Scholar 

  11. Babaie-Zadeh, M., Jutten, C., & Mansour, A. (2006). Sparse ICA via cluster-wise PCA. Neurocomputing, 69, 1458–1466.

    Article  Google Scholar 

  12. Baldi, P., & Hornik, K. (1989). Neural networks for principal component analysis: Learning from examples without local minima. Neural Networks, 2, 53–58.

    Article  Google Scholar 

  13. Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129–1159.

    Article  Google Scholar 

  14. Bingham, E., & Hyvarinen, A. (2000). ICA of complex valued signals: A fast and robust deflationary algorithm. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) (Vol. 3, pp. 357–362). Como, Italy.

    Google Scholar 

  15. Blanco, D., Mulgrew, B., McLaughlin, S., Ruiz, D. P., & Carrion, M. C. (2006). The use of ICA in multiplicative noise. Neurocomputing, 69, 1435–1441.

    Article  Google Scholar 

  16. Blanco, D., Mulgrew, B., Ruiz, D. P., & Carrion, M. C. (2007). Independent component analysis in signals with multiplicative noise using fourth-order statistics. Signal Processing, 87, 1917–1932.

    Article  MATH  Google Scholar 

  17. Blythe, D. A. J., von Bunau, P., Meinecke, F. C., & Muller, K.-R. (2012). Feature extraction for change-point detection using stationary subspace analysis. IEEE Transactions on Neural Networks and Learning Systems, 23(4), 631–643.

    Article  Google Scholar 

  18. Bofill, P., & Zibulevsky, M. (2001). Underdetermined blind source separation using sparse representations. Signal Processing, 81(11), 2353–2362.

    Article  MATH  Google Scholar 

  19. Burel, G. (1992). Blind separation of sources: A nonlinear neural algorithm. Neural Networks, 5, 937–947.

    Article  Google Scholar 

  20. Calhoun, V., & Adali, T. (2006). Complex infomax: Convergence and approximation of infomax with complex nonlinearities. Journal of VLSI Signal Processing, 44, 173–190.

    Article  MATH  Google Scholar 

  21. Campisi, P., & La Rocca, D. (2014). Brain waves for automatic biometric based user recognition. IEEE Transactions on Information Forensics and Security, 9(5), 782–800.

    Article  Google Scholar 

  22. Cardoso, J.-F., & Souloumiac, A. (1993). Blind beamforming for non-Gaussian signals. IEE Proceedings—F, 140(6), 362–370.

    Google Scholar 

  23. Cardoso, J.-F., & Laheld, B. H. (1996). Equivariant adaptive source separation. IEEE Transactions on Signal Processing, 44(12), 3017–3030.

    Article  Google Scholar 

  24. Cardoso, J.-F. (1997). Infomax and maximum likelihood for blind source separation. Signal Processing Letters, 4(4), 112–114.

    Article  Google Scholar 

  25. Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11, 157–192.

    Article  Google Scholar 

  26. Cardoso, J.-F. (2003). Dependence, correlation and Gaussianity in independent component analysis. Journal of Machine Learning Research, 4, 1177–1203.

    MathSciNet  MATH  Google Scholar 

  27. Cardoso, J.-F., & Adali, T. (2006). The maximum likelihood approach to complex ICA. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 673–676). Toulouse, France.

    Google Scholar 

  28. Chan, T.-H., Ma, W.-K., Chi, C.-Y., & Wang, Y. (2008). A convex analysis framework for blind separation of non-negative sources. IEEE Transactions on Signal Processing, 56(10), 5120–5134.

    Article  MathSciNet  MATH  Google Scholar 

  29. Choi, H., Kim, S., & Choi, S. (2004). Trust-region learning for ICA. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) (pp. 41–46). Budapest, Hungary.

    Google Scholar 

  30. Choi, H., & Choi, S. (2007). A relative trust-region algorithm for independent component analysis. Neurocomputing, 70, 1502–1510.

    Article  Google Scholar 

  31. Choi, S., Cichocki, A., & Amari, S. (2002). Equivariant nonstationary source separation. Neural Networks, 15, 121–130.

    Article  Google Scholar 

  32. Choi, S. (2006). Differential learning algorithms for decorrelation and independent component analysis. Neural Networks, 19, 1558–1567.

    Article  MATH  Google Scholar 

  33. Cichocki, A., Douglas, S. C., & Amari, S. (1998). Robust techniques for independent component analysis (ICA) with noisy data. Neurocomputing, 22, 113–129.

    Article  MATH  Google Scholar 

  34. Comon, P. (1994). Independent component analysis—A new concept? Signal Processing, 36(3), 287–314.

    Article  MATH  Google Scholar 

  35. Correa, N., Adali, T., Li, Y., & Calhoun, V. D. (2005). Comparison of blind source separation algorithms for fMRI using a new matlab toolbox: GIFT. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 401–404). Philadelphia, PA.

    Google Scholar 

  36. Creutzig, F., & Sprekeler, H. (2008). Predictive coding and the slowness principle: An information-theoretic approach. Neural Computation, 20(4), 1026–1041.

    Article  MathSciNet  MATH  Google Scholar 

  37. Cruces, S. (2010). Bounded component analysis of linear mixtures: A criterion of minimum convex perimeter. IEEE Transactions on Signal Processing, 58(4), 2141–2154.

    Article  MathSciNet  MATH  Google Scholar 

  38. Douglas, S. C. (2007). Fixed-point algorithms for the blind separation of arbitrary complex-valued non-Gaussian signal mixtures. EURASIP Journal on Advances in Signal Processing, 2007, Article ID 36525, 15 pp.

    Google Scholar 

  39. Douglas, S. C., & Chao, J.-C. (2007). Simple, robust, and memory-efficient FastICA algorithms using the Huber M-estimator cost function. Journal of VLSI Signal Processing, 48, 143–159.

    Article  Google Scholar 

  40. Erdogan, A. T. (2012). A family of bounded component analysis algorithms. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 1881–1884). Kyoto, Japan.

    Google Scholar 

  41. Erdogmus, D., Hild, II, K. E., Rao, Y. N., & Principe, J. C. (2004). Minimax mutual information approach for independent component analysis. Neural Computation, 16, 1235–1252.

    Google Scholar 

  42. Eriksson, J., & Koivunen, V. (2004). Identifiability, separability and uniqueness of linear ICA models. Signal Processing Letters, 11(7), 601–604.

    Article  Google Scholar 

  43. Eriksson, J., & Koivunen, V. (2006). Complex random vectors and ICA models: Identifiability, uniqueness, and separability. IEEE Transactions on Information Theory, 52(3), 1017–1029.

    Article  MathSciNet  MATH  Google Scholar 

  44. Escalante, B., Alberto, N., & Wiskott, L. (2013). How to solve classification and regression problems on high-dimensional data with a supervised extension of slow feature analysis. Journal of Machine Learning Research, 14(1), 3683–3719.

    MathSciNet  MATH  Google Scholar 

  45. Fiori, S. (2000). Blind separation of circularly-distributed sources by neural extended APEX algorithm. Neurocomputing, 34, 239–252.

    Article  MATH  Google Scholar 

  46. Fiori, S. (2003). Extended Hebbian learning for blind separation of complex-valued sources sources. IEEE Transactions on Circuits and Systems II, 50(4), 195–202.

    Article  Google Scholar 

  47. Foldiak, P. (1991). Learning invariance from transformation sequences. Neural Computation, 3(2), 194–200.

    Article  Google Scholar 

  48. Giannakopoulos, X., Karhunen, J., & Oja, E. (1999). An experimental comparison of neural algorithms for independent component analysis and blind separation. International Journal of Neural Systems, 9(2), 99–114.

    Article  Google Scholar 

  49. Goerg, G. (2013). Forecastable component analysis. In Proceedings of the 30th International Conference on Machine Learning (ICML 2013) (Vol. 28, pp. 64–72).

    Google Scholar 

  50. Hara, S., Kawahara, Y., Washio, T., von Bunau, P., Tokunaga, T., & Yumoto, K. (2012). Separation of stationary and non-stationary sources with a generalized eigenvalue problem. Neural Networks, 33, 7–20.

    Google Scholar 

  51. Haritopoulos, M., Yin, H., & Allinson, N. M. (2002). Image denoising using self-organizing map-based nonlinear independent component analysis. Neural Networks, 15, 1085–1098.

    Article  Google Scholar 

  52. Hild, II, K. E., Attias, H. T., & Nagarajan, S. S. (2008). An expectation-maximization method for spatio-temporal blind source separation using an AR-MOG source model. IEEE Transactions on Neural Networks, 19(3), 508–519.

    Google Scholar 

  53. Hyvarinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483–1492.

    Article  Google Scholar 

  54. Hyvarinen, A. (1998). New approximations of differential entropy for independent component analysis and projection pursuit. In M. I. Jordan, M. J. Kearns, & S. A. Solla (Eds.), Advances in neural information processing (Vol. 10, pp. 273–279). Cambridge, MA: MIT Press.

    Google Scholar 

  55. Hyvarinen, A., & Oja, E. (1998). Independent component analysis by general non-linear Hebbian-like learning rules. Signal Processing, 64, 301–313.

    Article  MATH  Google Scholar 

  56. Hyvarinen, A., & Pajunen, P. (1999). Nonlinear independent component analysis: Existence and uniqueness results. Neural Networks, 12, 429–439.

    Article  Google Scholar 

  57. Hyvarinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks, 10(3), 626–634.

    Article  Google Scholar 

  58. Hyvarinen, A., Sarela, J., & Vigario, R. (1999). Spikes and bumps: Artefacts generated by independent component analysis with insufficient sample size. In Proceedings of the International Workshop on ICA (pp. 425–429). Aussois, France.

    Google Scholar 

  59. Hyvarinen, A., & Hoyer, P. O. (2000). Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12(7), 1705–1720.

    Article  Google Scholar 

  60. Hyvarinen, A. (2001). Blind source separation by nonstationarity of variance: A cumulant-based approach. IEEE Transactions on Neural Networks, 12(6), 1471–1474.

    Article  Google Scholar 

  61. Hyvarinen, A., Hoyer, P. O., & Inki, M. (2001). Topographic independent component analysis. Neural Computation, 13, 1527–1558.

    Article  MATH  Google Scholar 

  62. Hyvarinen, A., & Raju, K. (2002). Imposing sparsity on the mixing matrix in independent component analysis. Neurocomputing, 49, 151–162.

    Article  MATH  Google Scholar 

  63. Hyvarinen, A., & Koster, U. (2006). FastISA: A fast fixed-point algorithm for independent subspace analysis. In Proceedings of the 14th European Symposium on Artificial Neural Networks (pp. 371–376). Bruges, Belgium.

    Google Scholar 

  64. Igual, J., Vergara, L., Camacho, A., & Miralles, R. (2003). Independent component analysis with prior information about the mixing matrix. Neurocomputing, 50, 419–438.

    Article  MATH  Google Scholar 

  65. Inan, H. A., & Erdogan, A. T. (2015). Convolutive bounded component analysis algorithms for independent and dependent source separation. IEEE Transactions on Neural Networks and Learning Systems, 26(4), 697–708.

    Article  MathSciNet  Google Scholar 

  66. Javidi, S., Took, C. C., & Mandic, D. P. (2011). Fast independent component analysis algorithm for quaternion valued signals. IEEE Transactions on Neural Networks, 22(12), 1967–1978.

    Article  Google Scholar 

  67. Jutten, C., & Herault, J. (1991). Blind separation of sources, Part I. An adaptive algorithm based on a neuromimetic architecture. Signal Processing, 24(1), 1–10.

    Google Scholar 

  68. Kameoka, H., Ono, N., Kashino, K., & Sagayama, S. (2009). Complex NMF: A new sparse representation for acoustic signals. In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (pp. 3437–3440).

    Google Scholar 

  69. Karhunen, J., Oja, E., Wang, L., Vigario, R., & Joutsensalo, J. (1997). A class of neural networks for independent component analysis. IEEE Transactions on Neural Networks, 8(3), 486–504.

    Article  Google Scholar 

  70. Karhunen, J., & Pajunen, P. (1997). Blind source separation and tracking using nonlinear PCA criterion: A least-squares approach. In Proceedings of the IEEE Internal Conference on Neural Networks (Vol. 4, pp. 2147–2152). Houston, TX.

    Google Scholar 

  71. Karhunen, J., Pajunen, P., & Oja, E. (1998). The nonlinear PCA criterion in blind source separation: Relations with other approaches. Neurocomputing, 22(1), 5–20.

    Article  MATH  Google Scholar 

  72. Karhunen, J., Malaroiu, S., & Ilmoniemi, M. (1999). Local linear independent component analysis based on clustering. International Journal of Neural Systems, 10(6), 439–451.

    Article  Google Scholar 

  73. Kawamoto, M., Matsuoka, K., & Ohnishi, N. (1998). A method of blind separation for convolved nonstationary signals. Neurocomputing, 22, 157–171.

    Article  MATH  Google Scholar 

  74. Kim, S., & Yoo, C. D. (2009). Underdetermined blind source separation based on subspace representation. IEEE Transactions on Signal Processing, 57(7), 2604–2614.

    Article  MathSciNet  MATH  Google Scholar 

  75. Kim, T. (2010). Real-time independent vector analysis for convolutive blind source separation. IEEE Transactions on Circuits and Systems I, 57(7), 1431–1438.

    Article  MathSciNet  Google Scholar 

  76. King, B. J., & Atlas, L. (2011). Single-channel source separation using complex matrix factorization. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 19(8), 2591–2597.

    Article  Google Scholar 

  77. Klampfl, S., Legenstein, R., & Maass, W. (2009). Spiking neurons can learn to solve information bottleneck problems and extract independent components. Neural Computation, 21, 911–959.

    Article  MathSciNet  MATH  Google Scholar 

  78. Kokkinakis, K., & Nandi, A. K. (2007). Generalized gamma density-based score functions for fast and flexible ICA. Signal Processing, 87, 1156–1162.

    Article  MATH  Google Scholar 

  79. Koldovsky, Z., Tichavsky, P., & Oja, E. (2005). Cramer–Rao lower bound for linear independent component analysis. In Proceedings of International Conference on Acoustics, Speech, and Signal Processing (ICASSP) (Vol. 3, pp. 581–584). Philadelphia, PA.

    Google Scholar 

  80. Koldovsky, Z., Tichavsky, P., & Oja, E. (2006). Efficient variant of algorithm FastICA for independent component analysis attaining the Cramer–Rao lower bound. IEEE Transactions on Neural Networks, 17(5), 1265–1277.

    Article  MATH  Google Scholar 

  81. Kompella, V. R., Luciw, M. D., & Schmidhuber, J. (2012). Incremental slow feature analysis: Adaptive low-complexity slow feature updating from high-dimensional input streams. Neural Computation, 24(11), 2994–3024.

    Article  MATH  Google Scholar 

  82. Kompella, V. R., Luciw, M., Stollenga, M. F., & Schmidhuber, J. (2016). Optimal curiosity-driven modular incremental slow feature analysis. Neural Computation, 28(8), 1599–1662.

    Article  MathSciNet  MATH  Google Scholar 

  83. Learned-Miller, E. G., & Fisher, III, J. W. (2003). ICA using spacings estimates of entropy. Journal of Machine Learning Research, 4, 1271–1295.

    Google Scholar 

  84. Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Indepedent component analysis using an extended infomax algorithm for mixed subgaussian and supergaussian sources. Neural Computation, 11(2), 417–441.

    Article  Google Scholar 

  85. Li, H., & Adali, T. (2008). A class of complex ICA algorithms based on the kurtosis cost function. IEEE Transactions on Neural Networks, 19(3), 408–420.

    Article  Google Scholar 

  86. Li, X.-L., & Adali, T. (2010). Complex independent component analysis by entropy bound minimization. IEEE Transactions on Circuits and Systems I, 57(7), 1417–1430.

    Article  MathSciNet  MATH  Google Scholar 

  87. Li, H., & Adali, T. (2010). Algorithms for complex ML ICA and their stability analysis using Wirtinger calculus. IEEE Transactions on Signal Processing, 58(12), 6156–6167.

    Article  MathSciNet  MATH  Google Scholar 

  88. Li, Y., Cichocki, A., & Amari, S.-I. (2004). Analysis of sparse representation and blind source separation. Neural Computation, 16(6), 1193–1234.

    Article  MATH  Google Scholar 

  89. Lu, W., & Rajapakse, J. C. (2003). Eliminating indeterminacy in ICA. Neurocomputing, 50, 271–290.

    Article  MATH  Google Scholar 

  90. Lu, W., & Rajapakse, J. C. (2005). Approach and applications of constrained ICA. IEEE Transactions on Neural Networks, 16(1), 203–212.

    Article  Google Scholar 

  91. Lu, W., & Rajapakse, J. C. (2006). ICA with reference. Neurocomputing, 69, 2244–2257.

    Article  Google Scholar 

  92. Martin-Clemente, R., & Zarzoso, V. (2017). On the link between \(L_1\)-PCA and ICA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(3), 515–528.

    Article  Google Scholar 

  93. Marvasti, F., Amini, A., Haddadi, F., Soltanolkotabi, M., Khalaj, B. H., Aldroubi, A., et al. (2012). A unified approach to sparse signal processing. EURASIP Journal on Advances in Signal Processing, 2012(44), 1–45.

    Google Scholar 

  94. Matsuoka, K., Ohya, M., & Kawamoto, M. (1995). A neural net for blind separation of nonstationary signals. Neural Networks, 8(3), 411–419.

    Article  Google Scholar 

  95. Mollah, M. N. H., Eguchi, S., & Minami, M. (2007). Robust prewhitening for ICA by minimizing \(\beta \)-divergence and its application to FastICA. Neural Processing Letters, 25, 91–110.

    Article  Google Scholar 

  96. Murata, N., Ikeda, S., & Ziehe, A. (2001). An approach to blind source separation based on temporal structure of speech signals. Neurocomputing, 41, 1–24.

    Article  MATH  Google Scholar 

  97. Naik, G. R., & Kumar, D. K. (2009). Determining number of independent sources in undercomplete mixture. EURASIP Journal on Advances in Signal Processing, 2009, Article ID 694850, 5 pp.

    Google Scholar 

  98. Novey, M., & Adali, T. (2008). Complex ICA by negentropy maximization. IEEE Transactions on Neural Networks, 19(4), 596–609.

    Article  Google Scholar 

  99. Novey, M., & Adali, T. (2008). On extending the complex FastICA algorithm to noncircular sources. IEEE Transactions on Signal Processing, 56(5), 2148–2154.

    Article  MathSciNet  MATH  Google Scholar 

  100. Oja, E., & Plumbley, M. (2004). Blind separation of positive sources by globally convergent gradient search. Neural Computation, 16, 1811–1825.

    Article  MATH  Google Scholar 

  101. Oja, E., & Yuan, Z. (2006). The FastICA algorithm revisited: Convergence analysis. IEEE Transactions on Neural Networks, 17(6), 1370–1381.

    Article  Google Scholar 

  102. Ollila, E., & Koivunen, V. (2009). Complex ICA using generalized uncorrelating transform. Signal Processing, 89, 365–377.

    Article  MATH  Google Scholar 

  103. Ollila, E. (2010). The deflation-based FastICA estimator: Statistical analysis revisited. IEEE Transactions on Signal Processing, 58(3), 1527–1541.

    Article  MathSciNet  MATH  Google Scholar 

  104. Pajunen, P. (1998). Blind source separation using algorithmic information theory. Neurocomputing, 22, 35–48.

    Article  MATH  Google Scholar 

  105. Park, H.-M., Oh, S.-H., & Lee, S.-Y. (2006). A modified infomax algorithm for blind signal separation. Neurocomputing, 70, 229–240.

    Article  Google Scholar 

  106. Pham, D.-T. (2000). Blind separation of instantenaous mixtrures of sources based on order statistics. IEEE Transactions on Signal Processing, 48(2), 363–375.

    Article  MathSciNet  Google Scholar 

  107. Plumbley, M. D. (2003). Algorithms for nonnegative independent component analysis. IEEE Transactions on Neural Networks, 14(3), 534–543.

    Article  Google Scholar 

  108. Poczos, B., & Lorincz, A. (2005). Independent subspace analysis using geodesic spanning trees. In Proceedings of the 22nd International Conference on Machine Learning (pp. 673–680). Bonn, Germany.

    Google Scholar 

  109. Richthofer, S., & Wiskott, L. (2015). Predictable feature analysis. Proceedings of the IEEE 14th International Conference on Machine Learning and Applications. Miami, FL.

    Google Scholar 

  110. Ristaniemi, T., & Joutsensalo, J. (2002). Advanced ICA-based receivers for block fading DS-CDMA channels. Signal Processing, 82(3), 417–431.

    Article  MATH  Google Scholar 

  111. Samadi, S., Babaie-Zadeh, M., & Jutten, C. (2006). Quasi-optimal EASI algorithm based on the Score Function Difference (SFD). Neurocomputing, 69, 1415–1424.

    Article  Google Scholar 

  112. Sarela, J., & Vigario, R. (2003). Overlearning in marginal distribution-based ICA: Analysis and solutions. Journal of Machine Learning Research, 4, 1447–1469.

    MathSciNet  MATH  Google Scholar 

  113. Sawada, H., Mukai, R., Araki, S., & Makino, S. (2004). A robust and precise method for solving the permutation problem of frequency-domain blind source separation. IEEE Transactions on Speech and Audio Processing, 12(5), 530–538.

    Article  Google Scholar 

  114. Schell, S. V., & Gardner, W. A. (1995). Programmable canonical correlation analysis: A flexible framework for blind adaptive spatial filtering. IEEE Transactions on Signal Processing, 42(12), 2898–2908.

    Article  Google Scholar 

  115. Schobben, L., & Sommen, W. (2002). A frequency domain blind signal separation method based on decorrelation. IEEE Transactions on Signal Processing, 50, 1855–1865.

    Article  Google Scholar 

  116. Shen, H., Kleinsteuber, M., & Huper, K. (2008). Local convergence analysis of FastICA and related algorithms. IEEE Transactions on Neural Networks, 19(6), 1022–1032.

    Article  Google Scholar 

  117. Smaragdis, P. (1998). Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 22, 21–34.

    Article  MATH  Google Scholar 

  118. Sprekeler, H., Zito, T., & Wiskott, L. (2014). An extension of slow feature analysis for nonlinear blind source separation. Journal of Machine Learning Research, 15, 921–947.

    MathSciNet  MATH  Google Scholar 

  119. Tan, Y., Wang, J., & Zurada, J. M. (2001). Nonlinear blind source separation using a radial basis function network. IEEE Transactions on Neural Networks, 12(1), 134–144.

    Google Scholar 

  120. Tichavsky, P., Koldovsky, Z., & Oja, E. (2005). Asymptotic performance of the FastICA algorithm for independent component analysis and its improvements. In Proceedings of IEEE Workshop on Statistical Signal Processing (pp. 1084–1089). Bordeaux, France.

    Google Scholar 

  121. Van Hulle, M. M. (2008). Sequential fixed-point ICA based on mutual information minimization. Neural Computation, 20, 1344–1365.

    Article  MATH  Google Scholar 

  122. Van Hulle, M. M. (2008). Constrained subspace ICA based on mutual information optimization directly. Neural Computation, 20, 964–973.

    Article  MATH  Google Scholar 

  123. von Bunau, P., Meinecke, F. C., Kiraly, F. C., & Muller, K.-R. (2009). Finding stationary subspaces in multivariate time series. Physical Review Letters, 103(21), 214101.

    Article  Google Scholar 

  124. Wang, F.-Y., Chi, C.-Y., Chan, T.-H., & Wang, Y. (2010). Nonnegative least-correlated component analysis for separation of dependent sources by volume maximization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5), 875–888.

    Article  Google Scholar 

  125. Weghenkel, B., Fischer, A., & Wiskott, L. (2017). Graph-based predictable feature analysis. Machine Learning, 106, 1359–1380.

    Article  MathSciNet  MATH  Google Scholar 

  126. Wiskott, L. (2003). Slow feature analysis: A theoretical analysis of optimal free responses. Neural Computation, 15(9), 2147–2177.

    Article  MATH  Google Scholar 

  127. Wiskott, L., & Sejnowski, T. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715–770.

    Article  MATH  Google Scholar 

  128. Yadav, R., Agarwal, R., & Swamy, M. N. S. (2012). Model-based seizure detection for intracranial EEG recordings. IEEE Transactions on Biomedical Engineering, 59, 1419–1428.

    Article  Google Scholar 

  129. Ye, M. (2006). Global convergence analysis of a discrete time nonnegative ICA algorithm. IEEE Transactions on Neural Networks, 17(1), 253–256.

    Article  Google Scholar 

  130. Zarzoso, V., & Comon, P. (2010). Robust independent component analysis by iterative maximization of the kurtosis contrast with algebraic optimal step size. IEEE Transactions on Neural Networks, 21(2), 248–261.

    Article  Google Scholar 

  131. Zarzoso, V., Comon, P., & Phlypo, R. (2010). A contrast function for independent component analysis without permutation ambiguity. IEEE Transactions on Neural Networks, 21(5), 863–868.

    Article  Google Scholar 

  132. Zhang, K., & Chan, L. (2008). Minimal nonlinear distortion principle for nonlinear independent component analysis. Journal of Machine Learning Research, 9, 2455–2487.

    MathSciNet  MATH  Google Scholar 

  133. Zheng, C.-H., Huang, D.-S., Sun, Z.-L., Lyu, M. R., & Lok, T.-M. (2006). Nonnegative independent component analysis based on minimizing mutual information technique. Neurocomputing, 69, 878–883.

    Article  Google Scholar 

  134. Ziegaus, Ch., & Lang, E. W. (2004). A neural implementation ofthe JADE algorithm (nJADE) using higher-order neurons. Neurocomputing, 56, 79–100.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke-Lin Du .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, KL., Swamy, M.N.S. (2019). Independent Component Analysis. In: Neural Networks and Statistical Learning. Springer, London. https://doi.org/10.1007/978-1-4471-7452-3_15

Download citation

Publish with us

Policies and ethics