Advertisement

Radial Basis Function Networks

  • Ke-Lin DuEmail author
  • M. N. S. Swamy
Chapter

Abstract

Next to multilayer perceptron, the RBF network is another popular feedforward neural network. This chapter is dedicated to the RBF network and its learning. A comparison with multilayer perceptron is also given.

References

  1. 1.
    Adeney, K. M., & Korenberg, M. J. (2000). Iterative fast orthogonal search algorithm for MDL-based training of generalized single-layer networks. Neural Networks, 13, 787–799.CrossRefGoogle Scholar
  2. 2.
    Albus, J. S. (1975). A new approach to manipulator control: Cerebellar model articulation control (CMAC). Transactions of the ASME: Journal of Dynamic System, Measurement and Control, 97, 220–227.zbMATHCrossRefGoogle Scholar
  3. 3.
    Barron, A. R. (1993). Universal approximation bounds for superpositions of a sigmoidal function. IEEE Transactions on Information Theory, 39(3), 930–945.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Benaim, M. (1994). On functional approximation with normalized Gaussian units. Neural Computation, 6(2), 319–333.CrossRefGoogle Scholar
  5. 5.
    Berthold, M. R., & Diamond, J. (1995). Boosting the performance of RBF networks with dynamic decay adjustment. In G. Tesauro, D. S. Touretzky, & T. Leen (Eds.), Advances in Neural Information Processing Systems (Vol. 7, pp. 521–528). Cambridge: MIT Press.Google Scholar
  6. 6.
    Bobrow, J. E., & Murray, W. (1993). An algorithm for RLS identification of parameters that vary quickly with time. IEEE Transactions on Automatic Control, 38(2), 351–354.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Borghese, N. A., & Ferrari, S. (1998). Hierarchical RBF networks and local parameter estimate. Neurocomputing, 19, 259–283.CrossRefGoogle Scholar
  8. 8.
    Bors, G. A., & Pitas, I. (1996). Median radial basis function neural network. IEEE Transactions on Neural Networks, 7(6), 1351–1364.CrossRefGoogle Scholar
  9. 9.
    Broomhead, D. S., & Lowe, D. (1988). Multivariable functional interpolation and adaptive networks. Complex System, 2, 321–355.MathSciNetzbMATHGoogle Scholar
  10. 10.
    Brown, M., Harris, C. J., & Parks, P. (1993). The interpolation capabilities of the binary CMAC. Neural Networks, 6(3), 429–440.CrossRefGoogle Scholar
  11. 11.
    Bugmann, G. (1998). Normalized Gaussian radial basis function networks. Neurocomputing, 20, 97–110.CrossRefGoogle Scholar
  12. 12.
    Cha, I., & Kassam, S. A. (1995). Channel equalization using adaptive complex radial basis function networks. IEEE Journal on Selected Areas in Communications, 13(1), 122–131.CrossRefGoogle Scholar
  13. 13.
    Chen, S., Billings, S. A., Cowan, C. F. N., & Grant, P. M. (1990). Practical identification of NARMAX models using radial basis functions. International Journal of Control, 52(6), 1327–1350.zbMATHCrossRefGoogle Scholar
  14. 14.
    Chen, S., Cowan, C., & Grant, P. (1991). Orthogonal least squares learning algorithm for radial basis function networks. IEEE Transactions on Neural Networks, 2(2), 302–309.CrossRefGoogle Scholar
  15. 15.
    Chen, S., Grant, P. M., & Cowan, C. F. N. (1992). Orthogonal least squares learning algorithm for training multioutput radial basis function networks. IEE Proceedings - F, 139(6), 378–384.Google Scholar
  16. 16.
    Chen, C. L., Chen, W. C., & Chang, F. Y. (1993). Hybrid learning algorithm for Gaussian potential function networks. IEE Proceedings - D, 140(6), 442–448.zbMATHCrossRefGoogle Scholar
  17. 17.
    Chen, S., Grant, P. M., McLaughlin, S., & Mulgrew, B. (1993). Complex-valued radial basis function networks. In Proceedings of the 3rd IEE International Conference on Artificial Neural Networks (pp. 148–152). Brighton, UK.Google Scholar
  18. 18.
    Chen, S., McLaughlin, S., & Mulgrew, B. (1994). Complex-valued radial basis function network, part I: network architecture and learning algorithms. Signal Processing, 35, 19–31.zbMATHCrossRefGoogle Scholar
  19. 19.
    Chen, S., Hong, X., Harris, C. J., & Hanzo, L. (2008). Fully complex-valued radial basis function networks: Orthogonal least squares regression and classification. Neurocomputing, 71, 3421–3433.CrossRefGoogle Scholar
  20. 20.
    Chuang, C. C., Su, S. F., & Hsiao, C. C. (2000). The annealing robust backpropagation (ARBP) learning algorithm. IEEE Transactions on Neural Networks, 11(5), 1067–1077.CrossRefGoogle Scholar
  21. 21.
    Chuang, C. C., Jeng, J. T., & Lin, P. T. (2004). Annealing robust radial basis function networks for function approximation with outliers. Neurocomputing, 56, 123–139.CrossRefGoogle Scholar
  22. 22.
    Ciocoiu, I. B. (2002). RBF networks training using a dual extended Kalman filter. Neurocomputing, 48, 609–622.zbMATHCrossRefGoogle Scholar
  23. 23.
    Constantinopoulos, C., & Likas, A. (2006). An incremental training method for the probabilistic RBF network. IEEE Transactions on Neural Networks, 17(4), 966–974.zbMATHCrossRefGoogle Scholar
  24. 24.
    Dorffner, G. (1994). Unified framework for MLPs and RBFNs: Introducing conic section function networks. Cybernetics and Systems, 25, 511–554.MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Du, K.-L., Huang, X., Wang, M., Zhang, B., & Hu, J. (2000). Robot impedance learning of the peg-in-hole dynamic assembly process. International Journal of Robotics and Automation, 15(3), 107–118.Google Scholar
  26. 26.
    Du, K.-L., & Swamy, M. N. S. (2006). Neural networks in a softcomputing framework. London: Springer.Google Scholar
  27. 27.
    Du, K.-L., & Swamy, M. N. S. (2014). Neural networks and statistical learning. London: Springer.Google Scholar
  28. 28.
    Esposito, A., Marinaro, M., Oricchio, D., & Scarpetta, S. (2000). Approximation of continuous and discontinuous mappings by a growing neural RBF-based algorithm. Neural Networks, 13, 651–665.CrossRefGoogle Scholar
  29. 29.
    Ferrari, S., Maggioni, M., & Borghese, N. A. (2004). Multiscale approximation with hierarchical radial basis functions networks. IEEE Transactions on Neural Networks, 15(1), 178–188.CrossRefGoogle Scholar
  30. 30.
    Girosi, F., & Poggio, T. (1990). Networks and the best approximation property. Biological Cybernetics, 63, 169–176.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Gomm, J. B., & Yu, D. L. (2000). Selecting radial basis function network centers with recursive orthogonal least squares training. IEEE Transactions on Neural Networks, 11(2), 306–314.CrossRefGoogle Scholar
  32. 32.
    Gorinevsky, D. (1997). An approach to parametric nonlinear least square optimization and application to task-level learning control. IEEE Transactions on Automatic Control, 42(7), 912–927.MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Heiss, M., & Kampl, S. (1996). Multiplication-free radial basis function network. IEEE Transactions on Neural Networks, 7(6), 1461–1464.CrossRefGoogle Scholar
  34. 34.
    Holden, S. B., & Rayner, P. J. W. (1995). Generalization and PAC learning: some new results for the class of generalized single-layer networks. IEEE Transactions on Neural Networks, 6(2), 368–380.CrossRefGoogle Scholar
  35. 35.
    Hong, X., & Billings, S. A. (1997). Givens rotation based fast backward elimination algorithm for RBF neural network pruning. IEE Proceedings - Control Theory and Applications, 144(5), 381–384.zbMATHCrossRefGoogle Scholar
  36. 36.
    Hou, M., & Han, X. (2010). Constructive approximation to multivariate function by decay RBF neural network. IEEE Transactions on Neural Networks, 21(9), 1517–1523.CrossRefGoogle Scholar
  37. 37.
    Huang, G. B., Saratchandran, P., & Sundararajan, N. (2004). An efficient sequential learning algorithm for growing and pruning RBF (GAP-RBF) Networks. IEEE Transactions on Systems, Man, and Cybernetics Part B, 34(6), 2284–2292.CrossRefGoogle Scholar
  38. 38.
    Huang, G. B., Saratchandran, P., & Sundararajan, N. (2005). A generalized growing and pruning RBF (GGAP-RBF) neural network for function approximation. IEEE Transactions on Neural Networks, 16(1), 57–67.CrossRefGoogle Scholar
  39. 39.
    Huang, G.-B., Chen, L., & Siew, C.-K. (2006). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transactions on Neural Networks, 17(4), 879–892.CrossRefGoogle Scholar
  40. 40.
    Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489–501.CrossRefGoogle Scholar
  41. 41.
    Jankowski, N., & Kadirkamanathan, V. (1997). Statistical control of growing and pruning in RBF-like neural networks. In Proceedings of the 3rd Conference on Neural Networks and Their Applications (pp. 663–670). Kule, Poland.Google Scholar
  42. 42.
    Jianping, D., Sundararajan, N., & Saratchandran, P. (2002). Communication channel equalization using complex-valued minimal radial basis function neural networks. IEEE Transactions on Neural Networks, 13(3), 687–696.CrossRefGoogle Scholar
  43. 43.
    Kadirkamanathan, V., & Niranjan, M. (1993). A function estimation approach to sequential learning with neural network. Neural Computation, 5(6), 954–975.CrossRefGoogle Scholar
  44. 44.
    Kadirkamanathan, V. (1994). A statistical inference based growth criterion for the RBF network. In Proceedings of the IEEE Workshop on Neural Networks for Signal Processing (pp. 12–21). Ermioni, Greece.Google Scholar
  45. 45.
    Kaminski, W., & Strumillo, P. (1997). Kernel orthonormalization in radial basis function neural networks. IEEE Transactions on Neural Networks, 8(5), 1177–1183.CrossRefGoogle Scholar
  46. 46.
    Karayiannis, N. B., & Mi, G. W. (1997). Growing radial basis neural networks: Merging supervised and unsupervised learning with network growth techniques. IEEE Transactions on Neural Networks, 8(6), 1492–1506.CrossRefGoogle Scholar
  47. 47.
    Karayiannis, N. B. (1999). Reformulated radial basis neural networks trained by gradient descent. IEEE Transactions on Neural Networks, 10(3), 657–671.CrossRefGoogle Scholar
  48. 48.
    Karayiannis, N. B., & Xiong, Y. (2006). Training reformulated radial basis function neural networks capable of identifying uncertainty in data classification. IEEE Transactions on Neural Networks, 17(5), 1222–1234.CrossRefGoogle Scholar
  49. 49.
    Kraaijveld, M. A., & Duin, R. P. W. (1991). Generalization capabilities of minimal kernel-based networks. In Proceedings of the International Joint Conference on Neural Networks (Vol. 1, pp. 843–848). Seattle, WA.Google Scholar
  50. 50.
    Krzyzak, A., & Linder, T. (1998). Radial basis function networks and complexity regularization in function learning. IEEE Transactions on Neural Networks, 9(2), 247–256.CrossRefGoogle Scholar
  51. 51.
    Langari, R., Wang, L., & Yen, J. (1997). Radial basis function networks, regression weights, and the expectation-maximization algorithm. IEEE Transactions on Systems, Man, and Cybernetics Part A, 27(5), 613–623.CrossRefGoogle Scholar
  52. 52.
    Lee, C. C., Chung, P. C., Tsai, J. R., & Chang, C. I. (1999). Robust radial basis function neural networks. IEEE Transactions on Systems, Man, and Cybernetics Part B, 29(6), 674–685.Google Scholar
  53. 53.
    Lee, S. J., & Hou, C. L. (2002). An ART-based construction of RBF networks. IEEE Transactions on Neural Networks, 13(6), 1308–1321.CrossRefGoogle Scholar
  54. 54.
    Lee, K. Y., & Jung, S. (1999). Extended complex RBF and its application to M-QAM in presence of co-channel interference. Electronics Letters, 35(1), 17–19.MathSciNetCrossRefGoogle Scholar
  55. 55.
    Lehtokangas, M., & Saarinen, J. (1998). Centroid based multilayer perceptron networks. Neural Processing Letters, 7, 101–106.CrossRefGoogle Scholar
  56. 56.
    Lehtokangas, M., Saarinen, J., & Kaski, K. (1995). Accelerating training of radial basis function networks with cascade-correlation algorithm. Neurocomputing, 9, 207–213.CrossRefGoogle Scholar
  57. 57.
    Leonardis, A., & Bischof, H. (1998). An efficient MDL-based construction of RBF networks. Neural Networks, 11, 963–973.CrossRefGoogle Scholar
  58. 58.
    Leung, C.-S., & Sum, J. P.-F. (2008). A fault-tolerant regularizer for RBF networks. IEEE Transactions on Neural Networks, 19(3), 493–507.CrossRefGoogle Scholar
  59. 59.
    Li, M.-B., Huang, G.-B., Saratchandran, P., & Sundararajan, N. (2005). Fully complex extreme learning machine. Neurocomputing, 68, 306–314.CrossRefGoogle Scholar
  60. 60.
    Liao, Y., Fang, S. C., & Nuttle, H. L. W. (2003). Relaxed conditions for radial-basis function networks to be universal approximators. Neural Networks, 16, 1019–1028.zbMATHCrossRefGoogle Scholar
  61. 61.
    Lowe, D. (1995). On the use of nonlocal and non-positive definite basis functions in radial basis function networks. In Proceedings of the IEE International Conference on Artificial Neural Networks (pp. 206–211). Cambridge, UK.Google Scholar
  62. 62.
    Mahdi, R. N., & Rouchka, E. C. (2011). Reduced hyperBF networks: Regularization by explicit complexity reduction and scaled Rprop-based training. IEEE Transactions on Neural Networks, 22(5), 673–686.CrossRefGoogle Scholar
  63. 63.
    Mao, K. Z. (2002). RBF neural network center selection based on Fisher ratio class separability measure. IEEE Transactions on Neural Networks, 13(5), 1211–1217.CrossRefGoogle Scholar
  64. 64.
    McLoone, S., Brown, M. D., Irwin, G., & Lightbody, G. (1998). A hybrid linear/nonlinear training algorithm for feedforward neural networks. IEEE Transactions on Neural Networks, 9(4), 669–684.CrossRefGoogle Scholar
  65. 65.
    McLoone, S., & Irwin, G. (2001). Improving neural network training solutions using regularisation. Neurocomputing, 37, 71–90.zbMATHCrossRefGoogle Scholar
  66. 66.
    Micchelli, C. A. (1986). Interpolation of scattered data: Distance matrices and conditionally positive definite functions. Constructive Approximation, 2, 11–22.MathSciNetzbMATHCrossRefGoogle Scholar
  67. 67.
    Miller, W. T., Glanz, F. H., & Kraft, L. G. (1990). CMAC: An associative neural network alternative to backpropagation. Proceedings of the IEEE, 78(10), 1561–1567.CrossRefGoogle Scholar
  68. 68.
    Moody, J., & Darken, C. J. (1989). Fast learning in networks of locally-tuned processing units. Neural Computation, 1(2), 281–294.CrossRefGoogle Scholar
  69. 69.
    Musavi, M. T., Ahmed, W., Chan, K. H., Faris, K. B., & Hummels, D. M. (1992). On the training of radial basis function classifiers. Neural Networks, 5(4), 595–603.CrossRefGoogle Scholar
  70. 70.
    Niyogi, P., & Girosi, F. (1999). Generalization bounds for function approximation from scattered noisy data. Advances in Computational Mathematics, 10, 51–80.MathSciNetzbMATHCrossRefGoogle Scholar
  71. 71.
    Oliveira, A. L. I., Melo, B. J. M., & Meira, S. R. L. (2005). Improving constructive training of RBF networks through selective pruning and model selection. Neurocomputing, 64, 537–541.CrossRefGoogle Scholar
  72. 72.
    Orr, M. J. L. (1995). Regularization in the selection of radial basis function centers. Neural Computation, 7(3), 606–623.CrossRefGoogle Scholar
  73. 73.
    Paetz, J. (2004). Reducing the number of neurons in radial basis function networks with dynamic decay adjustment. Neurocomputing, 62, 79–91.CrossRefGoogle Scholar
  74. 74.
    Park, J., & Sanberg, I. W. (1991). Universal approximation using radial-basis-function networks. Neural Computation, 3, 246–257.CrossRefGoogle Scholar
  75. 75.
    Peng, H., Ozaki, T., Haggan-Ozaki, V., & Toyoda, Y. (2003). A parameter optimization method for radial basis function type models. IEEE Transactions on Neural Networks, 14(2), 432–438.zbMATHCrossRefGoogle Scholar
  76. 76.
    Platt, J. (1991). A resource allocating network for function interpolation. Neural Computation, 3(2), 213–225.MathSciNetCrossRefGoogle Scholar
  77. 77.
    Poggio, T., & Girosi, F. (1990). Networks for approximation and learning. Proceedings of the IEEE, 78(9), 1481–1497.zbMATHCrossRefGoogle Scholar
  78. 78.
    Powell, M. J. D. (1987). Radial basis functions for multivariable interpolation: A review. In J. C. Mason & M. G. Cox (Eds.), Algorithms for Approximation (pp. 143–167). Oxford: Clarendon Press.Google Scholar
  79. 79.
    Qian, X., Huang, H., Chen, X., & Huang, T. (2017). Efficient construction of sparse radial basis function neural networks using \(L_1\)-regularization. Neural Networks, 94, 239–254.CrossRefGoogle Scholar
  80. 80.
    Rojas, I., Pomares, H., Bernier, J. L., Ortega, J., Pino, B., Pelayo, F. J., et al. (2002). Time series analysis using normalized PG-RBF network with regression weights. Neurocomputing, 42, 267–285.zbMATHCrossRefGoogle Scholar
  81. 81.
    Rosipal, R., Koska, M., & Farkas, I. (1998). Prediction of chaotic time-series with a resource-allocating RBF network. Neural Processing Letters, 7, 185–197.CrossRefGoogle Scholar
  82. 82.
    Roy, A., Govil, S., & Miranda, R. (1995). An algorithm to generate radial basis functions (RBF)-like nets for classification problems. Neural Networks, 8(2), 179–201.CrossRefGoogle Scholar
  83. 83.
    Salmeron, M., Ortega, J., Puntonet, C. G., & Prieto, A. (2001). Improved RAN sequential prediction using orthogonal techniques. Neurocomputing, 41, 153–172.zbMATHCrossRefGoogle Scholar
  84. 84.
    Sanchez, A., & V. D., (1995). Robustization of a learning method for RBF networks. Neurocomputing, 9, 85–94.Google Scholar
  85. 85.
    Schilling, R. J., Carroll, J. J, Jr., & Al-Ajlouni, A. F. (2001). Approximation of nonlinear systems with radial basis function neural networks. IEEE Transactions on Neural Networks, 12(1), 1–15.CrossRefGoogle Scholar
  86. 86.
    Schwenker, F., Kestler, H. A., & Palm, G. (2001). Three learning phases for radial-basis-function networks. Neural Networks, 14, 439–458.zbMATHCrossRefGoogle Scholar
  87. 87.
    Simon, D. (2002). Training radial basis neural networks with the extended Kalman filter. Neurocomputing, 48, 455–475.zbMATHCrossRefGoogle Scholar
  88. 88.
    Singla, P., Subbarao, K., & Junkins, J. L. (2007). Direction-dependent learning approach for radial basis function networks. IEEE Transactions on Neural Networks, 18(1), 203–222.CrossRefGoogle Scholar
  89. 89.
    Specht, D. F. (1990). Probabilistic neural networks. Neural Networks, 3, 109–118.CrossRefGoogle Scholar
  90. 90.
    Sum, J. P.-F., Leung, C.-S., & Ho, K. I.-J. (2009). On objective function, regularizer, and prediction error of a learning algorithm for dealing with multiplicative weight noise. IEEE Transactions on Neural Networks, 20(1), 124–138.CrossRefGoogle Scholar
  91. 91.
    Suresh, S., Savitha, R., & Sundararajan, N. (2011). A sequential learning algorithm for complex-valued self-regulating resource allocation network - CSRAN. IEEE Transactions on Neural Networks, 22(7), 1061–1072.CrossRefGoogle Scholar
  92. 92.
    Teddy, S. D., Quek, C., & Lai, E. M.-K. (2008). PSECMAC: A novel self-organizing multiresolution associative memory architecture. IEEE Transactions on Neural Networks, 19(4), 689–712.CrossRefGoogle Scholar
  93. 93.
    Titsias, M. K., & Likas, A. (2001). Shared kernel models for class conditional density estimation. IEEE Transactions on Neural Networks, 12(5), 987–997.CrossRefGoogle Scholar
  94. 94.
    Todorovic, B., & Stankovic, M. (2001). Sequential growing and pruning of radial basis function network. In Proceedings of the International Joint Conference on Neural Networks (IJCNN) (pp. 1954–1959). Washington, DC.Google Scholar
  95. 95.
    Uykan, Z., Guzelis, C., Celebi, M. E., & Koivo, H. N. (2000). Analysis of input-output clustering for determining centers of RBFN. IEEE Transactions on Neural Networks, 11(4), 851–858.CrossRefGoogle Scholar
  96. 96.
    Wang, X. X., Chen, S., & Brown, D. J. (2004). An approach for constructing parsimonious generalized Gaussian kernel regression models. Neurocomputing, 62, 441–457.CrossRefGoogle Scholar
  97. 97.
    Webb, A. R. (1994). Functional approximation in feed-forward networks: A least-squares approach to generalization. IEEE Transactions on Neural Networks, 5, 363–371.CrossRefGoogle Scholar
  98. 98.
    Webb, A. R., & Lowe, D. (1990). The optimized internal representation of multilayer classifier networks performs nonlinear discriminant analysis. Neural Networks, 3, 367–375.CrossRefGoogle Scholar
  99. 99.
    Wedge, D., Ingram, D., McLean, D., Mingham, C., & Bandar, Z. (2006). On global-local artificial neural networks for function approximation. IEEE Transactions on Neural Networks, 17(4), 942–952.CrossRefGoogle Scholar
  100. 100.
    Wettschereck, D., & Dietterich, T. (1992). Improving the performance of radial basis function networks by learning center locations. In J. E. Moody, S. J. Hanson, & R. P. Lippmann (Eds.), Advances in neural information processing systems (Vol. 4, pp. 1133–1140). San Mateo: Morgan Kaufmann.Google Scholar
  101. 101.
    Widrow, B., & Lehr, M. A. (1990). 30 years of adaptive neural networks: Perceptron, madaline, and backpropagation. Proceedings of the IEEE, 78(9), 1415–1442.CrossRefGoogle Scholar
  102. 102.
    Wilamowski, B. M., & Yu, H. (2010). Improved computation for Levenberg-Marquardt training. IEEE Transactions on Neural Networks, 21(6), 930–937.CrossRefGoogle Scholar
  103. 103.
    Xie, T., Yu, H., Hewlett, J., Rozycki, P., & Wilamowski, B. (2012). Fast and efficient second-order method for training radial basis function networks. IEEE Transactions on Neural Networks and Learning Systems, 23(4), 609–619.CrossRefGoogle Scholar
  104. 104.
    Yingwei, L., Sundararajan, N., & Saratchandran, P. (1997). A sequential learning scheme for function approximation by using minimal radial basis function neural networks. Neural Computation, 9(2), 461–478.zbMATHCrossRefGoogle Scholar
  105. 105.
    Yingwei, L., Sundararajan, N., & Saratchandran, P. (1998). Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm. IEEE Transactions on Neural Networks, 9(2), 308–318.CrossRefGoogle Scholar
  106. 106.
    Yu, D. L., Gomm, J. B., & Williams, D. (1997). A recursive orthogonal least squares algorithm for training RBF networks. Neural Processing Letters, 5, 167–176.CrossRefGoogle Scholar
  107. 107.
    Yu, H., Reiner, P. D., Xie, T., Bartczak, T., & Wilamowski, B. M. (2014). An incremental design of radial basis function networks. IEEE Transactions on Neural Networks and Learning Systems, 25(10), 1793–1803.CrossRefGoogle Scholar
  108. 108.
    Zhang, Q. (1997). Using wavelet networks in nonparametric estimation. IEEE Transactions on Neural Networks, 8(2), 227–236.CrossRefGoogle Scholar
  109. 109.
    Zhang, Q., & Benveniste, A. (1992). Wavelet networks. IEEE Transactions on Neural Networks, 3(6), 899–905.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd., part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringConcordia UniversityMontrealCanada
  2. 2.Xonlink Inc.HangzhouChina

Personalised recommendations