Skip to main content

State-Constrained Control Under Higher Impulses

  • Chapter
  • First Online:
Dynamic Programming for Impulse Feedback and Fast Controls

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 468))

  • 413 Accesses

Abstract

In these sections, we deal with additional constraints on the solutions to equations of Sects. 7.1 and 7.4, related to control under generalized (higher) impulses . These restrictions are an analogy of state constraints for systems controlled by ordinary impulses of Chap. 5 (see also [1, 7]). Discussing the problem of optimal control under higher impulses and state constraints we describe it first in terms of the theory of distributions [12, 13]. indicating conditions for its solvability. Then, in order to formulate conditions of optimality, we use a reduction of the system to the first-order form under vector measures, as shown in Sect. 7.3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Under the properties of our problem \(\max _t\psi (t,y(t)) = \text {ess}\sup _t \psi (t,y(t)) \),

  2. 2.

    The convolution of generalized function \(x(\cdot )\) with \(\zeta ^{k-1}\) allows to reduce a problem that involves high-order distributions \(x(\cdot )\) to an equivalent in terms of ordinary functions, under notations either \(x^\star (\cdot )\) or \(\mathbf{x}(\cdot )\), depending on those used in literature related to the specific problem.

References

  1. Aubin, J.-P.: Viability Theory. SCFA Birkhauser, Boston (1991)

    MATH  Google Scholar 

  2. Dunford, N., Schwartz, J.T.: Linear Operators. Part I. General Theory. Wiley-Interscience, New York (1958)

    MATH  Google Scholar 

  3. Ekeland, I., Temam, R.: Analyse Convexe et Problemes Variationelles. Dunot, Paris (1973)

    MATH  Google Scholar 

  4. Ioffe, A.D., Tikhomirov, V.M.: Theory of Extremal Problems. Nort-Holland, Amsterdam (1979)

    Google Scholar 

  5. Krein, M., Smulian, V.: On regular convex sets in the conjugate to a Banach space. Ann. Math. 41, 556–583 (1940)

    Article  MathSciNet  Google Scholar 

  6. Kurzhanski, A.B.: The principle of optimality in measurement feedback control for linear systems. In: Rantzer, A., Byrnes, C. (eds.) Directions in Mathematical Systems Theory and Optimization, pp. 193–202. Springer, Berlin (2003)

    Chapter  Google Scholar 

  7. Kurzhanski, A.B., Filippova, T.F.: On the theory of trajectory tubes: a mathematical formalism for uncertain dynamics, viability and control. In: Advances in Nonlinear Dynamics and Control. Progress in Systems and Control Theory, vol. 41, pp. 122–188 (1993)

    Google Scholar 

  8. Kurzhanski, A.B., Osipov, Yu.S.: On controlling linear systems through generalized controls. Differ. Uravn. 5(8), 1360–1370 (1969)

    Google Scholar 

  9. Leitman, G.: Optimality and reachability with feedback controls. Dynamical Systems and Microphysics: Control Theory and Mechanics. Academic, Orlando (1982)

    Google Scholar 

  10. Liapounoff, A.A.: Sur les fonctions-vecteurs completement additives. Bulletin de l’académie des sciences de l’URSS. Série mathématique 4, 465–478 (1940)

    Google Scholar 

  11. Rockafellar, R.T.: Convex Analysis, 2nd edn. Princeton University Press, Princeton, NJ (1999)

    MATH  Google Scholar 

  12. Schwartz, L.: Théorie des distributions. Hermann, Paris (1950)

    MATH  Google Scholar 

  13. Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)

    MATH  Google Scholar 

  14. Zavalischin, S.T.: On the question of the general form of a linear equation, I, II. Differ. Equ. 7(5), 791–797; 7(6), 981–989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Kurzhanski .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurzhanski, A.B., Daryin, A.N. (2020). State-Constrained Control Under Higher Impulses. In: Dynamic Programming for Impulse Feedback and Fast Controls. Lecture Notes in Control and Information Sciences, vol 468. Springer, London. https://doi.org/10.1007/978-1-4471-7437-0_8

Download citation

Publish with us

Policies and ethics