Skip to main content

The Open-Loop and Closed-Loop Impulse Controls

  • Chapter
  • First Online:
Dynamic Programming for Impulse Feedback and Fast Controls

Part of the book series: Lecture Notes in Control and Information Sciences ((LNCIS,volume 468))

Abstract

This chapter describes how to find optimal open-loop and closed-loop impulse controls. We begin by defining an impulse control system and proving the existence and uniqueness of its trajectories, (see also [2, 11]). Then we set up the basic problem of open-loop impulse control. This is how to transfer the system from a given initial state to a given target state within given time under a control of minimum variation. A key point in solving the open-loop impulse control problem is the construction of reachability sets for the system. Here we indicate how to construct such sets and study their properties. After that we present some simple model examples. The solution to the optimal impulse control problem problem is given by the Maximum Rule for Impulse Controls, an analogue of Pontryagin’s Maximum Principle for ordinary controls.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Following notations of [7], we describe an ellipsoid \({\mathscr {E}\left( {q}, {Q}\right) }\) with parameters \(q \in \mathbb {R}^n\), \(Q \in \mathbb {R}^{n \times n}\), \(Q \ge 0\), as a convex set in \(\mathbb {R}^n\) with support function \(\rho = \left\langle p, q \right\rangle + \left\langle p, Qx \right\rangle ^{\frac{1}{2}}\). If Q is nondegenerate, then \({\mathscr {E}\left( {q}, {Q}\right) } = {\left\{ x \in \mathbb {R}^n \;\big |\; \left\langle x -q, Q^{-1}(x - q) \right\rangle \le 1 \right\} }\).

References

  1. Daryin, A.N., Malakaeva, A.Y.: Numerical methods for linear impulse feedback problems. J. Comput. Syst. Sci. Int. 47(2), 207–213 (2008)

    Article  MathSciNet  Google Scholar 

  2. Gel’fand, I.M., Shilov, G.E.: Generalized Functions. Volume I: Properties and Operations. Dover, New York (1991)

    Google Scholar 

  3. Krasovski, N.N.: The Theory of Control of Motion. Nauka, Moscow (1968)

    Google Scholar 

  4. Kostousova, E.K.: Control synthesis via parallelotopes: optimization and parallel computations. Optim. Methods Softw. 14(4), 267–310 (2001)

    Article  MathSciNet  Google Scholar 

  5. Kurzhanski, A.B.: Comparison principle for equations of the Hamilton-Jacobi type in control theory. Proc. Steklov’s Math. Inst. 253(S1), S185–S195 (2006)

    Article  MathSciNet  Google Scholar 

  6. Kurzhanski, A.B., Osipov, YuS: On controlling linear systems through generalized controls. Differenc. Uravn. 5(8), 1360–1370 (1969)

    Google Scholar 

  7. Kurzhanski, A.B., Vályi, I.: Ellipsoidal Calculus for Estimation and Control. SCFA. Birkhäuser, Boston (1997)

    Book  Google Scholar 

  8. Kurzhanski, A.B., Varaiya, P.: Ellipsoidal techniques for reachability analysis: internal approximation. Syst. Control Lett. 41, 201–211 (2000)

    Article  MathSciNet  Google Scholar 

  9. Leitmann, G.: The Calculus of Variations and Optimal Control: An Introduction. Plenum Press, New york (1981)

    Book  Google Scholar 

  10. Neustadt, L.W.: Optimization, a moment problem and nonlinear programming. SIAM J. Control 2(1), 33–53 (1964)

    MathSciNet  MATH  Google Scholar 

  11. Schwartz, L.: Théorie Des Distributions. Hermann, Paris (1950)

    MATH  Google Scholar 

  12. Schwartz, L.: Méthodes mathématiques pour les sciences physiques. Hermann, Paris (1961)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander B. Kurzhanski .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag London Ltd., part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kurzhanski, A.B., Daryin, A.N. (2020). The Open-Loop and Closed-Loop Impulse Controls. In: Dynamic Programming for Impulse Feedback and Fast Controls. Lecture Notes in Control and Information Sciences, vol 468. Springer, London. https://doi.org/10.1007/978-1-4471-7437-0_7

Download citation

Publish with us

Policies and ethics