Skip to main content

Digital Signal Processing Circuits for Digital Class-D Power Amplifiers

  • Chapter
  • First Online:
  • 2359 Accesses

Part of the book series: Power Systems ((POWSYS))

Abstract

This Chapter considers digital signal processing circuits for the digital class-D power amplifier. Special attention is paid to the high quality audio power amplifier. In the digital class-D audio amplifier the dynamics should reach 120 dB, which results in high requirements for the algorithm used and its digital realization. The author proposes a modulator with a noise shaping circuit for the class-D amplifier. Audio signal interpolators are also considered, that allow for an increase in sampling frequency whilst maintaining a substantial separation of signal from noise. The author also presents an original analog power supply voltage fluctuation compensation circuit for the class-D amplifier. The problems of loudspeaker measurements are considered in this Chapter too. The class-D amplifier with digital click modulation is considered as well. Finally, two-way and three-way loudspeaker systems, designed by the author, are presented, for which an input to output signal is digitally processed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Analog Devices (2005) ADSP-2136x SHARC processor hardware reference. Rev 1.0. Analog Devices Inc\(\text{.}\)

    Google Scholar 

  2. Analog Devices (2007) ADSP-21364 Processor EZ-KIT lite evaluation system manual. Rev 3.2, Analog Devices Inc\(\text{. }\)

    Google Scholar 

  3. D’Appolito J (1998) Testing loudspeaker. Audio Amateur Press, Peterborough

    Google Scholar 

  4. Audiomatica (2005) Clio electrical and acoustical test. User’s Manual, Audiomatica

    Google Scholar 

  5. Barbour E (1998) The cool sound of tubes. IEEE Spectr 35(8):24–35

    Article  Google Scholar 

  6. Bateman A, Paterson-Stephens I (2002) The DSP handbook: algorithms, applications and design techniques. Prentice Hall, New York

    Google Scholar 

  7. Bresch E, Padgett WT (1999) TMS320C67-based design of a digital audio power amplifier introducing novel feedback strategy. In: Texas Instruments DSPS Fest 99

    Google Scholar 

  8. Bruunshuus T (2004) Implementation of power supply volume control. Application report, SLEA038, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  9. Bruunshuus T (2004) Power supply considerations for AV receivers. Application report, SLEA028, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  10. Carley RL, Schreier R, Temes GC (1997) Delta-sigma ADCs with multibit internal conveters. In: Norsworthy SR, Schreier R, Temes GC (eds) Delta-sigma data converters, theory, design and simulation. IEEE Press

    Google Scholar 

  11. Cataltepe T, Kramer AR, Larson LE, Temes GC, Walden RH (1992) Digitaly corrected multi-bit \(\Sigma \Delta \) data converters. In: Candy JC, Temes GC (eds.) Oversampling delta-sigma data converters theory, design, and simulation, IEEE proceedings ISCAS’89, May 1989. IEEE Press

    Google Scholar 

  12. Dabrowski A, Sozanski K (1998) Implementation of multirate modified wave digital filters using digital signal processors. In: XXI Krajowa Konferencja Teoria Obwodów i Układy Elektroniczne, KKTUIE98, Poznan

    Google Scholar 

  13. Dickason V (2000) The loudspeaker design cookbook. Audio Amateur Press, Peterborough

    Google Scholar 

  14. Dobrucki A (2007) Electroacoustic transducers. WNT, Warszawa (in Polish)

    Google Scholar 

  15. Duncan B (1996) High performance audio power amplifier for music performance and reproduction, Newnes

    Google Scholar 

  16. Esslinger R, Gruhler G, Stewart RW (2004) Feedback strategies in digitally controlled class-D amplifiers. In: Conference proceedings, AES 114th convention, Amsterdam, The Netherlands, 22–25 March 2003. Audio Engineering Society

    Google Scholar 

  17. Eton (2012) Midrange loudspeaker 4–200/A8/25 HEX. Data sheet, Eton GmbH

    Google Scholar 

  18. Eton (2012) Midrange loudspeaker 7–200/A8/32 HEX. Data sheet, Eton GmbH

    Google Scholar 

  19. Eton (2012) Midrange loudspeaker 5–880/25 Hex. Data sheet, Eton GmbH

    Google Scholar 

  20. Eton (2012) Tweeter loudspeaker 26HD1/A8. Data sheet, Eton Gmbh

    Google Scholar 

  21. Everest F (2000) Master handbook of acoustics. McGraw-Hill, New York

    Google Scholar 

  22. Fettweis A (1982) Transmultiplexers with either analog conversion circuits, wave digital filters, or SC filters—a review. IEEE Trans Commun 30(7):1575–1586

    Article  Google Scholar 

  23. Fettweis A (1989) Modified wave digital filters for improved implementation by commercial digital signal processors. Sig Process 16(3):193–207

    Article  MathSciNet  Google Scholar 

  24. Flige N (1994) Multirate digital signal processing. Wiley, New York

    Google Scholar 

  25. Galton I (1997) Spectral shaping of circuit errors in digital-to-analog converters. IEEE Trans Circ Syst II Analog Digital Sig Proc 44(10):789–797

    Article  Google Scholar 

  26. Gazsi L (1985) Explicit formulas for lattice wave digital filters. IEEE Trans Circ Syst 32(1):68–88

    Article  Google Scholar 

  27. Goldberg JM, Sandler MB (1994) New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier. IEE Proc Circ Devices Syst 141(4):315–324

    Article  Google Scholar 

  28. Gwee BH, Chang JS, Adrian V (2007) A micropower low-distortion digital class-D amplifier based on an algorithmic pulsewidth modulator. IEEE Trans Circ Syst I Regul Pap 52(10):2007–2022

    Article  Google Scholar 

  29. Holmes DG, Lipo TA (2003) Pulse width modulation for power converters: principles and practice. Institute of Electrical and Electronics Engineers, Inc\(\text{. }\)

    Google Scholar 

  30. Kostrzewa M, Kulka Z (2005) Time-domain performance investigations of the click modulation-based PWM for digital class-D audio power amplifiers. In: Signal processing 2005, IEEE conference proceedings, pp 121–126

    Google Scholar 

  31. Krukowski A, Kale I, Morling R, Hejn K (1994) A Design technique for polyphase decimators with binary constrained coefficients for high resolution A/D converters. In: IEEE international symposium on circuits and systems (ISCAS’94), pp 533–536

    Google Scholar 

  32. Kuncewicz L (2009) Design and realization of PWM with click modulation algorithm. Master’s thesis, University of Zielona Gora, Poland (in Polish)

    Google Scholar 

  33. Larson LE, Cataltepe T, Temes G (1992) Multibit oversampled - A/D converter with digital error correction. In: Candy JC, Temes GC (eds) Oversampling delta-sigma data converters, theory, design and simulation. IEEE electronics letters, 24, August 1988. IEEE Press

    Google Scholar 

  34. Ledger D, Tomarakos J (1998) Using the low cost, high performance ADSP-21065L digital signal processor for digital audio applications. Revision 1.0, Analog Devices, Norwood, USA

    Google Scholar 

  35. Linkwitz SH (1976) Active crossover networks for non-coincident drivers. J Audio Eng Soc 24(1):2–8

    Google Scholar 

  36. Logan BF (1984) Click modulation. AT&T Bell Lab Tech J 63(3):401–423

    Article  Google Scholar 

  37. Madsen K, Soerensen T (2005) PSRR for PurePath digitaltm audio amplifiers. Application report, SLEA049, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  38. Midya P, Roeckner B (2010) Large-signal design and performance of a digital PWM amplifier. J Audio Eng Soc 58(9):739–752

    Google Scholar 

  39. Mosely ID, Mellor PH, Bingham CM (1999) Effect of dead time on harmonic distortion in Class-D audio power amplifiers. IEEE Electron Lett 35(12):950–952

    Article  Google Scholar 

  40. Mouton T, Putzeys B (2009) Digital control of a PWM switching amplifier with global feedback. In: Conference proceeding, AES 37th international conference, Hillerod, Denmark, 28–30 August 2009. Audio Engineering Society

    Google Scholar 

  41. Nielsen K (1998) Audio power amplifier techniques with energy efficient power conversion. PhD thesis, Departament of Applied Electronics, Technical University of Denmark

    Google Scholar 

  42. Orfanidis SJ (1996) ADSP-2181 experiments. http://www.ece.rutgers.edu/orfanidi/ezkitl/man.pdf. Accessed Dec 2012

  43. Orfanidis SJ (2010) Introduction to signal processing. Prentice Hall Inc., New Jersey

    Google Scholar 

  44. Oliva A, Paolini E, Ang SS (2005) A new audio file format for low-cost, high-fidelity, portable digital audio amplifiers, Texas Instruments

    Google Scholar 

  45. Pascual C, Song Z, Krein PT, Sarwate DV, Midya P, Roeckner WJ (2003) High-fidelity PWM inverter for digital audio amplification: spectral analysis, real-time DSP Implementation and results. IEEE Trans Power Electron 18(1):473–485

    Article  Google Scholar 

  46. Putzeys B (2008) A universal grammar of class D amplification, Tutorial, 124th AES convention. http://www.aes.org. Accessed 26 June 2012

  47. Putzeys B, Veltman A, Hulst P, Groenenberg R (2006) All amplifiers are analogue, but some amplifiers are more analogue than others. Convention paper 353, 120th convention 2006 May. France, Audio Engineering Society, Paris, pp 20–23

    Google Scholar 

  48. Santi S, Ballardini M, Setti Rovatti RG, (2005) The effects of digital implementation on ZePoC codec. ECCTD III:173–176. IEEE

    Google Scholar 

  49. Self D (2002) Audio power amplifier design handbook. Newnes

    Google Scholar 

  50. Self D (2008) Linear audio power amplification. In: Tutorial, 124th AES convention. http://www.aes.org. Accessed 26 June 2012

  51. Slone GR (1999) High-power audio amplifier construction manual. McGraw-Hill, New York

    Google Scholar 

  52. Small R (1973) Vented-box loudspeaker systems. J Audio Eng Soc Part I 21:363–372

    Google Scholar 

  53. Small R (1973) Closed-box loudspeaker systems. J Audio Eng Soc Part II 21:11–18

    Google Scholar 

  54. Small R (1973) Vented-box loudspeaker systems. J Audio Eng Soc Part III 21:635–639

    Google Scholar 

  55. Small R (1973) Vented-box loudspeaker systems. J Audio Eng Soc Part II 21:549–554

    Google Scholar 

  56. Small R (1972) Direct-radiator loudspeaker system analysis. J Audio Eng Soc 20:383–395

    Google Scholar 

  57. Small R (1972) Closed-box loudspeaker systems. J Audio Eng Soc Part I 20:798–808

    Google Scholar 

  58. Sozanski K (1999) Design and research of digital filters banks using digital signal processors. PhD thesis, Technical University of Poznan (in Polish)

    Google Scholar 

  59. Sozanski K (2007) Subwoofer loudspeaker system with acoustic dipole. Elektronika : Konstrukcje, Technologie, Zastosowania 4:21–26

    Google Scholar 

  60. Sozanski K (2010) Digital realization of a click modulator for an audio power amplifier. Przeglad Elektrotechniczny (Electric Rev) 2010(2):353–357

    Google Scholar 

  61. Sozanski K (2002) Implementation of modified wave digital filters using digital signal processors. In: Conference proceedings, 9th international conference on electronics, circuits and systems, ICECS 2002, pp 1015–1018

    Google Scholar 

  62. Sozanski K, Strzelecki R, Fedyczak Z (2001) Digital control circuit for class-D audio power amplifier. In: Conference proceedings, 2001 IEEE 32nd annual power electronics specialists conference, PESC 2001, pp 1245–1250

    Google Scholar 

  63. Sozanski K (2015) Selected problems of digital signal processing in power electronic circuits. In: Conference proceedings SENE 2015. Lodz Poland

    Google Scholar 

  64. Sozanski K (2016) Signal-to-noise ratio in power electronic digital control circuits. In: Conference proceedings: Signal processing, algorithms, architectures, arrangements and applications, SPA 2016. Poznan University of Technology, pp 162–171

    Google Scholar 

  65. Stefanazzi L, Chierchie F (2014) Low distortion switching amplifier with discrete-time click modulation. IEEE Trans Ind Electron 61(7):3511–3518

    Article  Google Scholar 

  66. Streitenberger M, Bresch H, Mathis W (2000) Theory and implementation of a new type of digital power amplifiers for audio applications. In: ICAS 2000. IEEE, vol I, pp 511–514

    Google Scholar 

  67. Streitenberger M, Felgenhauer F, Bresch H, Mathis W (2002) Class-D audio amplifiers with separated baseband for low-power mobile applications. In: Conference proceedings, ICCSC’02.IEEE, pp 186–189

    Google Scholar 

  68. Texas Instruments (2004) TAS5121 Digital amplifier power stage. Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  69. Texas Instruments (2007) TAS5518-5261K2EVM. User’s guide, SLAA332A, Texas Instuments Inc\(\text{. }\)

    Google Scholar 

  70. Texas Instruments (2007) TAS5508-5121K8EVM evaluation module for the TAS5508 8-channel digital audio PWM processor and the TAS5121 digital amplifier power output stage. User’s guide, SLEU054b.pdf, Texas Instrumentss Inc\(\text{. }\)

    Google Scholar 

  71. Instruments Texas (2008) TMS320F28335/28334/28332, TMS320F28235/28234/28232 digital signal controllers (DSCs). Texas Instruments Inc., Data manual

    Google Scholar 

  72. Texas Instruments (2010) TAS5508C 8-channel digital audio PWM processor. Data manual, SLES257, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  73. Texas Instruments (2010) C2000 Teaching materials, tutorials and applications. SSQC019, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  74. Texas Instruments (2010) A 600W, universal input, isolated PFC power supply for AVR amplifiers based on the TAS5630/5631. Reference Design, SLOU293 Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  75. Texas Instruments (2012) TAS5631B 300 W stereo/ 600 W mono PurePathtm HD digital-input power stage. Data sheet, SLES263C, Texas Instruments Inc\(\text{. }\)

    Google Scholar 

  76. Thiele N (1971) Loudspeakers in vented boxes. J Audio Eng Soc Part I 19:382–392

    Google Scholar 

  77. Thiele N (1971) Loudspeakers in vented boxes. J Audio Eng Soc Part II 19:471–483

    Google Scholar 

  78. Thile N, Small R (2008) Loudspeaker parameters, Tutorial. In: AES 124th convention. http://www.aes.org

  79. Vaidyanathan PP (1992) Multirate systems and filter banks. Prentice Hall Inc., New Jersey

    MATH  Google Scholar 

  80. Venezuela RA, Constantindes AG (1982) Digital signal processing schemes for efficient interpolation and decimation. IEE Proc Part G(6):225–235

    Google Scholar 

  81. Verona J (2001) Power digital-to-analog conversion using sigma-delta and pulse width modulations. In: ECE1371 Analog Electronics II, ECE University of Toronto 2001(II), pp 1–14

    Google Scholar 

  82. Zielinski TP (2005) Digital signal processing: from theory to application. Wydawnictwo Komunikacji i Lacznosci, Warsaw (in Polish)

    Google Scholar 

  83. Zielinski TP, Korohoda P, Rumian R (eds) (2014) Digital signal processing in telecommunication, basics, multimedia transmission. Wydawnictwo Naukowe PWN, Warsaw (in Polish)

    Google Scholar 

  84. Zolzer U (2008) Digital audio signal processing. Wiley, New York

    Book  Google Scholar 

  85. Zolzer U (ed) (2002) DAFX—digital audio effects. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Sozański .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Sozański, K. (2017). Digital Signal Processing Circuits for Digital Class-D Power Amplifiers. In: Digital Signal Processing in Power Electronics Control Circuits. Power Systems. Springer, London. https://doi.org/10.1007/978-1-4471-7332-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7332-8_6

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7331-1

  • Online ISBN: 978-1-4471-7332-8

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics