Skip to main content

Active Contours and Active Surfaces

  • Chapter
  • First Online:
Book cover Guide to Medical Image Analysis

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

  • 3330 Accesses

Abstract

Active contours and active surfaces are means of model-driven segmentation. Their use enforces closed and smooth boundaries for each segmentation irrespective of the image content. They are particularly useful if such properties cannot be derived everywhere from the data. We will discuss explicit and implicit active contours, their definition, parameterization, and properties. Different fitting methods for active contours will be presented in detail, since their understanding is necessary to understand parameterization and stability issues. We present methods to extend implicit active contours to multi-label segmentation and we discuss how to deal with intensity variations and inhomogeneous background intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The procedure is similar to optical flow computation by simultaneous minimization of the error for the Horn–Schunck constraint and the difference between neighboring displacement vectors.

  2. 2.

    The advantage over using a pixel or voxel grid is that unique surface representations for a surface passing the cell exist. This is important for an active contour because it is a surface in 2D or 3D. Using a pixel or voxel grid requires an additional mechanism to resolve ambiguities, which are known, for instance, from the marching cube algorithm on a voxel grid.

  3. 3.

    The chain rule for a function g of several functions f 1, f 2, …, f n is \( \frac{{{\text{d}}\left[ {g\left( {f_{1} \left( t \right),f_{2} \left( t \right), \ldots ,f_{n} \left( t \right)} \right)} \right]}}{{{\text{d}}t}} = \frac{{{\text{d}}g}}{{{\text{d}}f_{1} }}\frac{{{\text{d}}f_{1} }}{{{\text{d}}t}} + \frac{{{\text{d}}g}}{{{\text{d}}f_{2} }}\frac{{{\text{d}}f_{2} }}{{{\text{d}}t}} + \cdots + \frac{{{\text{d}}g}}{{{\text{d}}f_{n} }}\frac{{{\text{d}}f_{n} }}{{{\text{d}}t}} \).

  4. 4.

    It is a solution under some specializing assumptions that are necessary to define a unique optimum because the formulation contains a free parameter. Details are described in Caselles et al. (1997). It does not restrict the use of this formalism to find an optimal active contour.

References

  • Adalsteinsson D, Sethian JA (1995) A fast level set method for propagating interfaces. J Comput Phys 118(2):269–277

    Google Scholar 

  • Bunyak F, Hafiane A, Palaniappan K (2011) Histopathology tissue segmentation by combining fuzzy clustering with multiphase vector level sets. In: Arabnia HR, Tran Q-N (eds) Software tools and algorithms for biological systems. Springer, Berlin, pp 413–424

    Google Scholar 

  • Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 21(1):61–79

    Article  MATH  Google Scholar 

  • Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  • Chan TF, Sandberg BY, Vese LA (2000) Active contours without edges for vector-valued images. J Vis Commun Image Represent 11(2):130–141

    Article  Google Scholar 

  • Cohen LD (1991) On active contour models and balloons. CVGIP Image Underst 53(2):211–218

    Article  MATH  Google Scholar 

  • Cohen LD, Cohen I (1993) Finite-element methods for active contour models and balloons for 2-d and 3-d images. IEEE Trans Pattern Recognit Mach Intell 15(11):1131–1147

    Article  Google Scholar 

  • Cohen LD, Kimmel R (1997) Global minimum for active contour models: a minimal path approach. Intl J Comput Vis 24(1):57–78

    Article  Google Scholar 

  • Davatzikos CA, Prince JL (1995) An active contour model for mapping the cortex. IEEE Trans Med Imaging 14(2):65–80

    Article  Google Scholar 

  • Gloger O, Toennies KD, Liebscher V, Kugelmann B, Laqua R, Völzke H (2012) Prior shape level set segmentation on multistep generated probability maps of MR datasets for fully automatic kidney parenchyma volumetry. IEEE Trans Med Imaging 31(2):312–325

    Article  Google Scholar 

  • Gloger O, Toennies K, Laqua R, Völzke H (2015) Fully automated renal tissue volumetry in MR volume data using prior-shape-based segmentation in subject-specific probability maps. IEEE Trans Biomed Eng 62(10):2338–2351

    Article  Google Scholar 

  • Han X, Xu C, Prince JL (2003) A topology preserving level set method for geometric deformable models. IEEE Trans Pattern Anal Mach Intell 25(6):755–768

    Article  Google Scholar 

  • Honea DM, Snyder WE, Hanson KM (1999) Three-dimensional active surface approach to lymph node segmentation. Proc SPIE 3661(2):1003–1011

    Article  Google Scholar 

  • Kass M, Witkins A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vision 1(4):321–331

    Article  Google Scholar 

  • Kichenassamy S, Kumar A, Olver P, Tannenbaum A, Yezzi A (1995) Gradient flows and geometric active contour models. In: 5th international conference on computer vision (ICCV’95), pp 810–817

    Google Scholar 

  • Klann E, Ramlau R, Ring W (2011) A Mumford-Shah level-set approach for the inversion and segmentation of SPECT/CT data. Inverse Prob Imaging 5(1):137–166

    Article  MathSciNet  MATH  Google Scholar 

  • Kohlberger T, Sofka M, Zhang J, Birkbeck N, Wetzl J, Kaftan J, Declerck J, Zhou SK (2011) Automatic multi-organ segmentation using learning-based segmentation and level set optimization. In: Medical image computing and computer-assisted intervention–MICCAI 2011, pp 338–345

    Google Scholar 

  • Kosic N, Weber S, Büchler P, Lutz C, Reimers N, Gonzales Ballester MA, Reyes M (2010) Optimisation of orthopaedic implant design using statistical shape analysis based on level set. Med Image Anal 14(3):265–275

    Article  Google Scholar 

  • Ladak HM, Milner JS, Steinman DA (2000) Rapid three-dimensional segmentation of the carotid bifurcation from serial MR images. J Biomech Eng 122(1):96–99

    Article  Google Scholar 

  • Leventon ME, Grimson WEL, Faugeras O (2000) Statistical shape influence in geodesic active contours. In: IEEE computer society conference on computer vision and pattern recognition (CVPR’00), vol 1, pp 1316–1323

    Google Scholar 

  • Lee M, Cho W, Kim S, Park S, Kim JH (2012) Segmentation of interest region in medical volume images using geometric deformable model. Comput Biol Med 42(5):523–537

    Article  Google Scholar 

  • Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: IEEE conference on computer vision and pattern recognition CVPR 2005, vol 1, pp 430–436

    Google Scholar 

  • Li CM, Kao C, Gore JC, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In: IEEE conference on computer vision and pattern recognition CVPR 2007, pp 1–7

    Google Scholar 

  • Li C, Xu C, Gui C, Fox MD (2010) Distance regularized level set evolution and its application to image segmentation. IEEE Trans Image Process 19(12):3243–3254

    Article  MathSciNet  Google Scholar 

  • Li CM, Huang R, Gatenby JC, Metaxas DN, Gore JC (2011a) A level set method for image segmentation in the presence on intensity inhomogeneities with applications to MRI. IEEE Trans Image Process 20(7):2007–2016

    Article  MathSciNet  Google Scholar 

  • Li BN, Chui CK, Chang S, Ong SH (2011b) Integrating spatial fuzzy clustering with level set methods for automated medical image segmentation. Comput Biol Med 41:1–10

    Article  Google Scholar 

  • Lin PL, Huang PY, Huang PW (2012) An automatic lesion detection method for dental X-ray images by segmentation using variational level set. In: International conference on machine learning and cybernetics (ICMLC), vol 5, pp 1821–1825

    Google Scholar 

  • McInerney T, Terzopoulos D (1995a) A dynamic finite element surface model for segmentation and tracking in multidimensional medical images with application to cardiac 4D image analysis. J Comput Med Imaging Graph 19(1):69–83

    Google Scholar 

  • McInerney T, Terzopoulos D (1995b) Topologically adaptable snakes. In: International conference on computer vision ICCV, pp 840–845

    Google Scholar 

  • McInerney T, Terzopoulos D (2000) T-snakes: topologically adaptable snakes. Med Image Anal 4(1):73–91

    Article  Google Scholar 

  • Mumford D, Shah J (1989) Optimal approximations by piecewise smooth functions and associated variational problems. Commun Pure Appl Math 42(5):577–685

    Article  MathSciNet  MATH  Google Scholar 

  • Neuenschwander WM, Fua P, Iverson L, Székely G, Kübler O (1997) Ziplock snakes. Int J Comput Vis 25(3):191–201

    Article  Google Scholar 

  • Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed—algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49

    Article  MathSciNet  MATH  Google Scholar 

  • Osher S, Paragios N (2003) Geometric level set methods in imaging, vision, and graphics. Springer, Berlin

    Google Scholar 

  • Paragios N (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247

    Article  MathSciNet  MATH  Google Scholar 

  • Paragios N (2003) A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans Med Imaging 22(6):773–776

    Article  Google Scholar 

  • Paragios N, Mellina-Gottardo O, Ramesh V (2004) Gradient vector flow fast geodesic active contours. IEEE Trans Pattern Anal Mach Intell 26(3):402–407

    Article  Google Scholar 

  • Park J, Keller JM (2001) Snakes on the watershed. IEEE Trans Pattern Anal Mach Intell 23(10):1201–1205

    Article  Google Scholar 

  • Park SC, Kim SH, Lee GS, Lee CW, Na IS, Le AVH, Do TY (2011) Flower area segmentation by a level set based on GMM initialization. In: KSII the 3rd international conference on internet (ICONI) 2011, pp 17–21

    Google Scholar 

  • Qi X, Xing F, Foran DJ, Yang L (2012) Robust segmentation of overlapping cells in histopathology specimens using parallel seed detection and repulsive level set. IEEE Trans Biomed Eng 59(3):754–765

    Article  Google Scholar 

  • Rousson M, Paragios N (2002) Shape priors for level set representations. In: 7th European conference on computer vision ECCV 2002. LNCS, vol 2351, pp 416–418

    Google Scholar 

  • Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Appl Math 93(4):1591–1595

    MathSciNet  MATH  Google Scholar 

  • Sethian JA (1998) Level set and fast marching methods. Cambridge University Press, Cambridge

    Google Scholar 

  • Shyu KK, Pham VT, Tran TT, Lee PL (2012) Global and local fuzzy energy-based active contours for image segmentation. Nonlinear Dyn 67(1559):1578

    MathSciNet  MATH  Google Scholar 

  • Sokoll S, Rink K, Toennies KD, Brechmann A (2008) Dynamic segmentation of the cerebral cortex in MR data using implicit active contours. In: 12th annual conference on medical image understanding and analysis MIUA 2008, pp 184–188

    Google Scholar 

  • Sussman M, Fatemi E (1999) An efficient, interface-preserving level set redistancing algorithm and its application to interfacial incompressible fluid flow. SIAM J Sci Comput 20(4):1165–1191

    Article  MathSciNet  MATH  Google Scholar 

  • Suzuki K, Kohlbrenner R, Epstein ML, Obajuluwa AM, Xu J, Hori M (2010) Computer-aided measurement of liver volumes in CT by means of geodesic active contour segmentation coupled with level-set algorithm. Med Phys 37(5):2159.2166

    Google Scholar 

  • Toennies KD, König T, Gloger O (2016) Domain knowledge for level set segmentation in medical imaging. Biomed Image Segmentation Adv Trends 51–74

    Google Scholar 

  • Tsai A, Yezzi A, Willsky AS (2001) Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans Image Process 10(8):1169–1186

    Google Scholar 

  • Wang XF, Huang DS, Xu H (2010) An efficient local Chan-Vese model for image segmentation. Pattern Recognit 43(3):603–618

    Article  MATH  Google Scholar 

  • Westin CF, Lorigo LM, Faugeras O, Grimson WEL, Dawson S, Norbash A, Kikinis R (2000) Segmentation by adaptive geodesic active contours. In: Medical image computing and computer-assisted intervention—MICCAI 2000. LNCS, vol 1935, pp 266–275

    Google Scholar 

  • Yazdanpanah A, Hamarneh G, Smith BR, Sarunic MV (2011) Segmentation of intra-retinal layers from optical coherence tomography images using an active contour approach. IEEE Trans Med Imaging 30(2):484–496

    Article  Google Scholar 

  • Xu X, Prince JL (1998) Snakes, shapes, and gradient vector flow. IEEE Trans Image Process 7(3):359–369

    Google Scholar 

  • Zhang K, Zhang L, Zhang S (2010a) A variational multiphase level set approach to simultaneous segmentation and bias correction. In: 17th IEEE international conference on image processing ICIP 2010, pp 4105–4108

    Google Scholar 

  • Zhang K, Song H, Zhang L (2010b) Active contours driven by local image fitting energy. Pattern Recognit 43(4):1199–1206

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus D. Toennies .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London Ltd.

About this chapter

Cite this chapter

Toennies, K.D. (2017). Active Contours and Active Surfaces. In: Guide to Medical Image Analysis. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-7320-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7320-5_9

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7318-2

  • Online ISBN: 978-1-4471-7320-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics