Advertisement

Chemoprevention and Angiogenesis

  • Shikha Rao
  • Rebecca A. Pankove
  • Jiaqi Mi
  • Justin Elsey
  • Jack L. Arbiser
Chapter

Abstract

An estimated one in five Americans will develop skin cancer in their lifetime. In 2016, melanoma is estimated to account for approximately 5% (76380) of all expected new cancer cases by the American cancer society and with estimated death of 10130 people due to the disease. In addition, non-melanoma skin cancers, including basal and squamous cell carcinoma represent the most common of cancers, with over 1 million new cases per year. UVA (315–400nm) and UVB (280–315nm) rays from the sun are related to 70% of melanoma cases and are considered complete carcinogens: they can both initiate and promote cancer. High-risk populations would include solid organ transplant patients on immunosuppressive drugs, patients with DNA repair defects, as well as those with extensive sun exposure, fair skin, and red hair. Because of its high incidence, skin cancer is one of the most pressing issues in cancer today, and has sparked a need to delay the occurrence of cancer in high-risk populations through dietary or chemical chemoprevention. Of the various pathways researched for chemoprevention, angiogenesis, a hallmark of cancer, is one such targeted event.

Keywords

Chemoprevention Angiogenesis Vitamin D Melanoma, Cancer Honokiol Curcumin Polyphenols 

References

  1. 1.
    Robinson JK. Sun exposure, sun protection, and vitamin D. JAMA. 2005;294(12):1541.PubMedCrossRefGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin. 2016;66(1):7–30.PubMedCrossRefGoogle Scholar
  3. 3.
    Rees JR, Scot Zens M, Gui J, Celaya MO, Riddle BL, Karagas MR. Non melanoma skin cancer and subsequent cancer risk. PLoS One. 2014;9(6):e99674.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    American Cancer Society. Cancer facts & figures 2016. Atlanta: American Cancer Society; 2016.Google Scholar
  5. 5.
    Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA Cancer J Clin. 2009;59(4):225–49.PubMedCrossRefGoogle Scholar
  6. 6.
    What you need to know about melanoma and other skin cancers. National Cancer Institute. http://www.cancer.gov/publications/patient-education/wyntk-skin-cancer. Accessed 2 Apr 2016.
  7. 7.
    Smith JG, Davidson EA, Sams WM, Clark RD. Alterations in human dermal connective tissue with age and chronic sun damage. J Invest Dermatol. 1962;39(4):347–50.PubMedCrossRefGoogle Scholar
  8. 8.
    Chung JH, Seo JY, Choi HR, Lee MK, Youn CS, Rhie G-E, et al. Modulation of skin collagen metabolism in aged and photoaged human skin in vivo. J Invest Dermatol. 2001;117(5):1218–24.PubMedCrossRefGoogle Scholar
  9. 9.
    Kvaskoff M, Weinstein P. Are some melanomas caused by artificial light? Med Hypotheses. 2010;75(3):305–11.PubMedCrossRefGoogle Scholar
  10. 10.
    Troll W, Wiesner R. The role of oxygen radicals as a possible mechanism of tumor promotion. Annu Rev Pharmacol Toxicol. 1985;25(1):509–28.PubMedCrossRefGoogle Scholar
  11. 11.
    Gruijl FRD. Photocarcinogenesis: UVA vs UVB. Methods Enzymol. 2000;319:359–66.PubMedCrossRefGoogle Scholar
  12. 12.
    Bachelor MA, Bowden G. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin Cancer Biol. 2004;14(2):131–8.PubMedCrossRefGoogle Scholar
  13. 13.
    Cheng KC, Cahill DS, Kasai H, Nishimura S, Loeb LA. 8-Hydroxyguanine, an abundant form of oxidative DNA damage, causes G→T and A→C substitutions. J Biol Chem. 1992;267:166–72.PubMedGoogle Scholar
  14. 14.
    Nandakumar V, Vaid M, Tollefsbol TO, Katiyar SK. Aberrant DNA hypermethylation patterns lead to transcriptional silencing of tumor suppressor genes in UVB-exposed skin and UVB-induced skin tumors of mice. Carcinogenesis. 2011;32(4):597–604.PubMedCrossRefGoogle Scholar
  15. 15.
    Tong X, Mirzoeva S, Veliceasa D, Bridgeman BB, Fitchev P, Cornwell ML, et al. Chemopreventive apigenin controls UVB-induced cutaneous proliferation and angiogenesis through HuR and thrombospondin-1. Oncotarget. 2014;5(22):11413–27.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Kang NJ, Jung SK, Lee KW, Lee HJ. Myricetin is a potent chemopreventive phytochemical in skin carcinogenesis. Ann N Y Acad Sci. 2011;1229(1):124–32.PubMedCrossRefGoogle Scholar
  17. 17.
    Einspahr JG, Thomas TL, Saboda K, Nickolof BJ, Warneke J, Curiel-Lewandrowski C, et al. Expression of vascular endothelial growth factor in early cutaneous melanocytic lesion progression. Cancer. 2007;110(11):2519–27.PubMedCrossRefGoogle Scholar
  18. 18.
    Wogan GN, Hecht SS, Felton JS, Conney AH, Loeb LA. Environmental and chemical carcinogenesis. Semin Cancer Biol. 2004;14(6):473–86.PubMedCrossRefGoogle Scholar
  19. 19.
    Einspahr JG, Stratton SP, Bowden G, Alberts DS. Chemoprevention of human skin cancer. Crit Rev Oncol Hematol. 2002;41(3):269–85.PubMedCrossRefGoogle Scholar
  20. 20.
    Adami J, Gabel H, Lindelof B, Ekström K, Rydh B, Glimelius B, et al. Cancer risk following organ transplantation: A nationwide cohort study in Sweden. Br J Cancer. 2003;89:1221.PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Gruber SA, Gillingham K, Sothern RB, Stephanian E, Matas AJ, Dunn DL. De novo cancer in cyclosporine-treated and non-cyclosporine-treated adult primary renal allograft recipients. Clin Transplant. 1994;8:388.PubMedGoogle Scholar
  22. 22.
    Petronzelli F, Sollima D, Coppola G, Martini-Neri ME, Neri G, Genuardi M. CDKN2A germline splicing mutation affecting both p16(ink4) and p14(arf) RNA processing in a melanoma/neurofibroma kindred. Genes Chromosomes Cancer. 2001;31(4):398–401.PubMedCrossRefGoogle Scholar
  23. 23.
    Sporn MB. Carcinogenesis and cancer: Different perspectives on the same disease. Cancer Res. 1991;51:6215–8.PubMedGoogle Scholar
  24. 24.
    Marks F, Fürstenberger G. Cancer chemoprevention through interruption of multistage carcinogenesis. Eur J Cancer. 2000;36(3):314–29.PubMedCrossRefGoogle Scholar
  25. 25.
    Flora SD, Ferguson LR. Overview of mechanisms of cancer chemopreventive agents. Mutat Res/Fundam Mol Mech Mutagen. 2005;591(1-2):8–15.CrossRefGoogle Scholar
  26. 26.
    Bonovas S, Tsantes A, Drosos T, Sitaras NM. Cancer chemoprevention: A summary of the current evidence. Anticancer Res. 2008;28(3B):1857–66.PubMedGoogle Scholar
  27. 27.
    Lippman SM, Lee JJ, Sabichi AL. Cancer Chemoprevention: Progress and Promise. JNCI J Nati Cancer Inst. 1998;90(20):1514–28.CrossRefGoogle Scholar
  28. 28.
    Rao C, Reddy BS. NSAIDs and Chemoprevention. Curr Cancer Drug Targets CCDT. 2004;4(1):29–42.CrossRefGoogle Scholar
  29. 29.
    Hudlicka O. Growth of capillaries in skeletal and cardiac muscle. Circ Res. 1982;50(4):451–61.PubMedCrossRefGoogle Scholar
  30. 30.
    Nagy JA, Chang S-H, Dvorak AM, Dvorak HF. Why are tumour blood vessels abnormal and why is it important to know? Br J Cancer. 2009;100(6):865–9.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Folkman J. Tumor angiogenesis. Adv Cancer Res. 1985;175–203Google Scholar
  32. 32.
    Marks F, Müller-Decker K, Fürstenberger G. A causal relationship between unscheduled eicosanoid signaling and tumor development: Cancer chemoprevention by inhibitors of arachidonic acid metabolism. Toxicology. 2000;153(1–3):11–26.PubMedCrossRefGoogle Scholar
  33. 33.
    Melder RJ, Koenig GC, Witwer BP, Safabakhsh N, Munn LL, Jain RK. During angiogenesis, vascular endothelial growth factor regulate natural killer cell adhesion to tumor endothelium. Nat Med. 1996;2(9):992–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Arbiser JL, Byers HR, Cohen C, Arbeit J. Altered basic fibroblast growth factor expression in common epidermal neoplasms: Examination with in situ hybridization and immunohistochemistry. J Am Acad Dermatol. 2000 Jun;42(6):973–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Logie A, Dunois-Larde C, Rosty C, Levrel O, Blanche M, Ribeiro A, et al. Activating mutations of the tyrosine kinase receptor FGFR3 are associated with benign skin tumors in mice and humans. Hum Mol Genet. 2005;14:1153–60.PubMedCrossRefGoogle Scholar
  36. 36.
    Breier G, Albrecht U, Sterrer S, Risau W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development. 1992;114:521–32.PubMedGoogle Scholar
  37. 37.
    Li WW, Casey R, Gonzalez EM, Folkman J. Angiostatic steroids potentiated by sulfated cyclodextrins inhibit corneal neovascularization. Invest Ophthalmol Vis Sci. 1991;32(11):2898–905.Google Scholar
  38. 38.
    Miller JW, Adamis AP, Shima DT, Dʼamore PA, Moulton RS, Oʼreilly MS, et al. Vascular endothelial growth factor/vascular permeability factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Retina. 1995;15(2):174.CrossRefGoogle Scholar
  39. 39.
    Takahashi K, Mulliken JB, Kozakewich HP, Rogers RA, Folkman J, Ezekowitz RA. Cellular markers that distinguish the phases of hemangioma during infancy and childhood. J Clin Invest. 1994;93(6):2357–64.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Peacock DJ. Angiogenesis inhibition suppresses collagen arthritis. J Exp Med. 1992;175(4):1135–8.PubMedCrossRefGoogle Scholar
  41. 41.
    Rothstein R. Safety profiles of leading nonsteroidal anti-inflammatory drugs. Am J Med. 1998;105(5):39S–43S.PubMedCrossRefGoogle Scholar
  42. 42.
    Mcdonald JJ. A single amino acid difference between cyclooxygenase-1 (COX-1) and -2(COX-2) reverses the selectivity of COX-2 specific inhibitors. J Biol Chem. 1996;271(26):15810–4.PubMedCrossRefGoogle Scholar
  43. 43.
    Williams CS, DuBois RN. Prostaglandin endoperoxide synthase: Why two isoforms? Am J Physiol. 1996;270(3 Pt 1):G393–400.PubMedGoogle Scholar
  44. 44.
    Surh YJ, Chun KS. Cancer chemopreventive effects of curcumin. Adv Exp Med Biol. 2007;595:149–72.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu CH, Chang SH, Narko K, Trifan OC, Wu MT, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276(21):18563–9.PubMedCrossRefGoogle Scholar
  46. 46.
    Martin SP, Ulrich CD. Pancreatic cancer surveillance in a high-risk cohort. Is it worth the cost? Med Clin North Am. 2000;84:739. xii.PubMedCrossRefGoogle Scholar
  47. 47.
    Vainio H, Morgan G. Ann Chir Gynaecol. 2000;89:173.PubMedGoogle Scholar
  48. 48.
    Harris RE. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology. 2009;17(2):55–67.PubMedCrossRefGoogle Scholar
  49. 49.
    Kelley D. Benzo[a] pyrene up-regulates cyclooxygenase-2 gene expression in oral epithelial cells. Carcinogenesis. 1997;18(4):795–9.PubMedCrossRefGoogle Scholar
  50. 50.
    Song S, Lippman SM, Zou Y, Ye X, Ajani JA, Xu X-C. Induction of cyclooxygenase-2 by benzo[a]pyrene diol epoxide through inhibition of retinoic acid receptor-β2 expression. Oncogene. 2005;24(56):8268–76.PubMedCrossRefGoogle Scholar
  51. 51.
    Karmali RA. Dietary fatty acids, COX-2 blockade, and carcinogenesis. In: Harris RE, ed. COX-2 blockade in cancer prevention and therapy. Totowa, NJ: Humana Press; 2002. pp. 3–12.Google Scholar
  52. 52.
    Burd R, Choy H, Dicker A. Potential for inhibitors of cyclooxygenase-2 to enhance tumor radioresponse. In: Harris RE, ed. COX-2 blockade in cancer prevention and therapy. Totowa, NJ: Humana Press; 2002. pp. 301–311.Google Scholar
  53. 53.
    Buckman S. COX-2 expression is induced by UVB exposure in human skin: Implications for the development of skin cancer. Carcinogenesis. 1998;19(5):723–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Jaimes EA, Tian R-X, Pearse D, Raij L. Up-regulation of glomerular COX-2 by angiotensin II: Role of reactive oxygen species. Kidney Int. 2005;68(5):2143–53.PubMedCrossRefGoogle Scholar
  55. 55.
    Chang Y-WE, Putzer K, Ren L, Kaboord B, Chance TW, Qoronfleh MW, et al. Differential regulation of cyclooxygenase 2 expression by small GTPases Ras, Rac1, and RhoA. J Cell Biochem. 2005;96(2):314–29.PubMedCrossRefGoogle Scholar
  56. 56.
    Coffey RJ, Hawkey CJ, Damstrup L, Graves-Deal R, Daniel VC, Dempsey PJ, et al. Epidermal growth factor receptor activation induces nuclear targeting of cyclooxygenase-2, basolateral release of prostaglandins, and mitogenesis in polarizing colon cancer cells. Proc Natl Acad Sci. 1997;94(2):657–62.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Chang YJ, Wu MS, Lin JT, Chen CC. Helicobacter pylori-induced invasion and angiogenesis of gastric cells is mediated by cyclooxygenase-2 induction through TLR2/TLR9 and promoter regulation. J Immunol. 2005;175(12):8242–52.PubMedCrossRefGoogle Scholar
  58. 58.
    Singh A, Sharma H, Salhan S, Gupta SD, Bhatla N, Jain S, et al. Evaluation of expression of apoptosis-related proteins and their correlation with HPV, telomerase activity, and apoptotic index in cervical cancer. Pathobiology. 2004;71(6):314–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Cheng AS-L, Chan HL-Y, Leung WK, To KF, Go MY-Y, Chan JY-H, et al. Expression of HBx and COX-2 in chronic hepatitis B, cirrhosis and hepatocellular carcinoma: Implication of HBx in upregulation of COX-2. Mod Pathol. 2004;17(10):1169–79.PubMedCrossRefGoogle Scholar
  60. 60.
    Kaul R, Verma SC, Murakami M, Lan K, Choudhuri T, Robertson ES. Epstein-Barr virus protein can upregulate cyclo-oxygenase-2 expression through association with the suppressor of metastasis Nm23-H1. J Virol. 2006;80(3):1321–31.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Harris RE, Beebe-Donk J, Alshafie GA. Reduction in the risk of human breast cancer by selective cyclooxygenase-2 (COX-2) inhibitors. BMC Cancer. 2006;6(1):27.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhuang Z-H, Tsao S-W, Deng W, Wang J-D, Xia HH-X, He H, et al. Early upregulation of cyclooxygenase-2 in human papillomavirus type 16 and telomerase-induced immortalization of human esophageal epithelial cells. J Gastroenterol Hepatol. 2008;23(10):1613–20.PubMedCrossRefGoogle Scholar
  63. 63.
    Gurpinar E, Grizzle WE, Piazza GA. NSAIDs inhibit tumorigenesis, but how? Clin Cancer Res. 2013;20(5):1104–13.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Harris RE, Kasbari S, Farrar WB. Prospective study of nonsteroidal anti-inflammatory drugs and breast cancer. Oncol Rep. 1999;6(1):71–3.PubMedGoogle Scholar
  65. 65.
    Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nat New Biol. 1971;231(25):232–5.PubMedCrossRefGoogle Scholar
  66. 66.
    Bentham Science Publisher, Sarkar FH, Adsule S, Li Y, Padhye S. Back to the Future: COX-2 Inhibitors for Chemoprevention and Cancer Therapy. MRMC Mini-Rev Med Chem. 2007;7(6):599–608.CrossRefGoogle Scholar
  67. 67.
    Berg J, Christoph T, Widerna M, Bodenteich A. Isoenzyme-specific cyclooxygenase inhibitors: A whole cell assay system using the human erythroleukemic cell line HEL and the human monocytic cell line Mono Mac 6. J Pharmacol Toxicol Methods. 1997;37(4):179–86.PubMedCrossRefGoogle Scholar
  68. 68.
    Elwich-Flis S, Soltysiak-Pawluczuk D, Splawinski J. Anti-angiogenic and apoptotic effects of metabolites of sulindac on chick embryo chorioallantoic membrane. Hybrid Hybridomics. 2003;22:55–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Skopinska-Rozewska E, Piazza GA, Sommer E, Pamukcu R, Barcz E, Filewska M, et al. Inhibition of angiogenesis by sulindac and its sulfone metabolite (FGN-1): A potential mechanism for their antineoplastic properties. Int J Tissue React. 1998;20:85–9.PubMedGoogle Scholar
  70. 70.
    Lin HP, Kulp SK, Tseng PH, Yang YT, Yang CC, Chen CS, et al. Growth inhibitory effects of celecoxib in human umbilical vein endothelial cells are mediated through G1 arrest via multiple signaling mechanisms. Mol Cancer Ther. 2004;3:1671–80.PubMedGoogle Scholar
  71. 71.
    Wei D, Wang L, He Y, Xiong HQ, Abbruzzese JL, Xie K. Celecoxib inhibits vascular endothelial growth factor expression in and reduces angiogenesis and metastasis of human pancreatic cancer via suppression of Sp1 transcription factor activity. Cancer Res. 2004;64:2030–8.PubMedCrossRefGoogle Scholar
  72. 72.
    Lee HC, Park IC, Park MJ, An S, Woo SH, Jin HO, et al. Sulindac and its metabolites inhibit invasion of glioblastoma cells via down-regulation of Akt/PKB and MMP-2. J Cell Biochem. 2005;94:597–610.PubMedCrossRefGoogle Scholar
  73. 73.
    Keller JJ, Offerhaus GJ, Polak M, Goodman SN, Zahurak ML, Hylind LM, et al. Rectal epithelial apoptosis in familial adenomatous polyposis patients treated with sulindac. Gut. 1999;45:822–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Kolligs FT, Bommer G, Goke B. Wnt/beta-catenin/tcf signaling: A critical pathway in gastrointestinal tumorigenesis. Digestion. 2002;66:131–44.PubMedCrossRefGoogle Scholar
  75. 75.
    Tinsley HN, Gary BD, Keeton AB, Lu W, Li Y, Piazza GA. Inhibition of PDE5 by sulindac sulfide selectively induces apoptosis and attenuates oncogenic Wnt/betacatenin- mediated transcription in human breast tumor cells. Cancer Prev Res (Phila). 2011;4:1275–84.CrossRefGoogle Scholar
  76. 76.
    Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature. 1998;396:77–80.PubMedCrossRefGoogle Scholar
  77. 77.
    Yamamoto Y, Yin MJ, Lin KM, Gaynor RB. Sulindac inhibits activation of the NF-kappaB pathway. J Biol Chem. 1999;274:27307–14.PubMedCrossRefGoogle Scholar
  78. 78.
    Fosslien E. Biochemistry of cyclooxygenase (COX)-2 inhibitors and molecular pathology of COX-2 in neoplasia. Crit Rev Clin Lab Sci. 2000;37(5):431–502.PubMedCrossRefGoogle Scholar
  79. 79.
    Marnett LJ. The COXIB experience: A look in the rearview mirror. Annu Rev Pharmacol Toxicol. 2009;49:265–90.PubMedCrossRefGoogle Scholar
  80. 80.
    Gottlieb S. COX 2 inhibitors may increase risk of heart attack. BMJ. 2001;323:471.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Bree AF. Shah MR; BCNS Colloquium Group. Consensus statement from the first international colloquium on basal cell nevus syndrome (BCNS). Am J Med Genet A. 2011;155A(9):2091–7.PubMedCrossRefGoogle Scholar
  82. 82.
    Reifenberger J, Wolter M, Knobbe CB, Köhler B, Schönicke A, Scharwächter C, et al. Somatic mutations in the PTCH, SMOH, SUFUH and TP53 genes in sporadic basal cell carcinoma. Br J Dermatol. 2005;152:43–51.PubMedCrossRefGoogle Scholar
  83. 83.
    Fecher LA, Sharfman WH. Advanced basal cell carcinoma, the hedgehog pathway, and treatment options - role of smoothened inhibitors. Biologics. 2015;9:129–40.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Piérard-Franchimont C, Hermanns-Lê T, Paquet P, Herfs M, Delvenne P, Piérard GE. Hedgehog- and mTOR-targeted therapies for advanced basal cell carcinomas. Future Oncol. 2015;11(22):2997–3002.PubMedCrossRefGoogle Scholar
  85. 85.
    Thangapazham RL, Sharma A, Maheshwari RK. Beneficial role of curcumin in skin diseases. Adv Exp Med Biol. 2007;595:343–57.PubMedCrossRefGoogle Scholar
  86. 86.
    Sa G, Das T. Anti cancer effects of curcumin: Cycle of life and death. Cell Div. 2008;3(1):14.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Azuine MA, Bhide SV. Chemopreventive effect of turmeric against stomach and skin tumors induced by chemical carcinogens in Swiss mice. Nutr Cancer. 1992;17(1):77–83.PubMedCrossRefGoogle Scholar
  88. 88.
    Singh M, Suman S, Shukla Y. New enlightenment of skin cancer chemoprevention through Phytochemicals: In vitro and in vivo studies and the underlying mechanisms. Biomed Res Int. 2014:243452.Google Scholar
  89. 89.
    Dinarello CA. The paradox of pro-inflammatory cytokines in cancer. Cancer Metastasis Rev. 2006;25(3):307–13.PubMedCrossRefGoogle Scholar
  90. 90.
    Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199–225.PubMedCrossRefGoogle Scholar
  91. 91.
    Chun K-S. Curcumin inhibits phorbol ester-induced expression of cyclooxygenase-2 in mouse skin through suppression of extracellular signal-regulated kinase activity and NF- B activation. Carcinogenesis. 2003;24(9):1515–24.PubMedCrossRefGoogle Scholar
  92. 92.
    Bhandarkar SS, Arbiser JL. Curcumin as an inhibitor of angiogenesis. Adv Exp Med Biol. 2007;595:185–95.PubMedCrossRefGoogle Scholar
  93. 93.
    Grandjean-Laquerriere A, Gangloff SC, Naour RL, Trentesaux C, Hornebeck W, Guenounou M. relative contribution of NF-Κb and AP-1 in the modulation by curcumin and pyrrolidine dithiocarbamate of the UVB-induced cytokine expression by keratinocytes. Cytokine. 2002;18(3):168–77.PubMedCrossRefGoogle Scholar
  94. 94.
    Kunnumakkara AB, Guha S, Krishnan S, Diagaradjane P, Gelovani J, Aggarwal BB. Curcumin potentiates antitumor activity of gemcitabine in an orthotopic model of pancreatic cancer through suppression of proliferation, angiogenesis, and inhibition of nuclear factor- B-regulated gene products. Cancer Res. 2007;67(8):3853–61.PubMedCrossRefGoogle Scholar
  95. 95.
    Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, et al. Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor- B pathway. Clin Cancer Res. 2007;13(11):3423–30.PubMedCrossRefGoogle Scholar
  96. 96.
    Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C. Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 1998;4(6):376–83.PubMedPubMedCentralGoogle Scholar
  97. 97.
    Cho J-W, Park K, Kweon GR, Jang B-C, Baek W-K, Suh M-H, et al. Curcumin inhibits the expression of COX-2 in UVB-irradiated human keratinocytes (HaCaT) by inhibiting activation of AP-1: p38 MAP kinase and JNK as potential upstream targets. Exp Mol Med. 2005;37(3):186–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas P. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 1998;64(04):353–6.PubMedCrossRefGoogle Scholar
  99. 99.
    Gu Z, Shan K, Chen H, Chen YQ. n-3 Polyunsaturated fatty acids and their role in cancer chemoprevention. Curr Pharmacol Rep. 2015;1:283–94.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Wang W, Zhu J, Lyu F, Panigrahy D, Ferrara KW, Hammock B, et al. ω-3 Polyunsaturated fatty acids-derived lipid metabolites on angiogenesis, inflammation and cancer. Prostaglandins Other Lipid Mediat. 2014;113-115:13–20.PubMedCrossRefGoogle Scholar
  101. 101.
    Serini S, Fasano E, Celleno L, Cittadini A, Calviello G. Potential of long-chain n-3 polyunsaturated fatty acids in melanoma prevention. Nutr Rev. 2014;72(4):255–66.PubMedCrossRefGoogle Scholar
  102. 102.
    Black H, Rhodes L. Potential benefits of omega-3 fatty acids in non-melanoma skin cancer. J Clin Med JCM. 2016;5(2):23.CrossRefGoogle Scholar
  103. 103.
    Pardini RS. Nutritional intervention with omega-3 fatty acids enhances tumor response to anti-neoplastic agents. Chem Biol Interact. 2006;162(2):89–105.PubMedCrossRefGoogle Scholar
  104. 104.
    Serini S, Donato V, Piccioni E, Trombino S, Monego G, Toesca A, et al. Docosahexaenoic acid reverts resistance to UV-induced apoptosis in human keratinocytes: Involvement of COX-2 and HuR. J Nutr Biochem. 2011;22(9):874–85.PubMedCrossRefGoogle Scholar
  105. 105.
    Serini S, Fasano E, Piccioni E, Monego G, Cittadini ARM, Celleno L, et al. DHA induces apoptosis and differentiation in human melanoma cells in vitro: Involvement of HuR-mediated COX-2 mRNA stabilization and β-catenin nuclear translocation. Carcinogenesis. 2011;33(1):164–73.PubMedCrossRefGoogle Scholar
  106. 106.
    Albino AP et al. Cell cycle arrest and apoptosis of melanoma cells by docosahexaenoic acid: Association with decreased pRb phosphorylation. Cancer Res. 2000;60:4139–45.PubMedGoogle Scholar
  107. 107.
    Reich R, Royce L, Martin GR. Eicosapentaenoic acid reduces the invasive and metastatic activities of malignant tumor cells. Biochem Biophys Res Commun. 1989;160:559–64.PubMedCrossRefGoogle Scholar
  108. 108.
    Serini S, Fasano E, Piccioni E, Cittadini ARM, Calviello G. Dietary n-3 polyunsaturated fatty acids and the paradox of their health benefits and potential harmful effects. Chem Res Toxicol. 2011;24:2093–105.PubMedCrossRefGoogle Scholar
  109. 109.
    Pilkington SM et al. Randomized controlled trial of oral omega-3 PUFA in solar-simulated radiation-induced suppression of human cutaneous immune responses. Am J Clin Nutr. 2013;97:646–52.PubMedCrossRefGoogle Scholar
  110. 110.
    Li K, Huang T, Zheng J, Wu K, Li D. Effect of marine-derived n-3 polyunsaturated fatty acids on C-reactive protein, interleukin 6 and tumor necrosis factor α: a meta-analysis. PLoS One. 2014;9(2):1–28.Google Scholar
  111. 111.
    Vara-Messler M et al. A potential role of PUFAs and COXIBs in cancer chemoprevention. Prostaglandins Other Lipid Mediat. 2015;120:97–102.PubMedCrossRefGoogle Scholar
  112. 112.
    Wen B et al. n-3 Polyunsaturated fatty acids decrease mucosal/epidermal reactions and enhance antitumour effect of ionising radiation with inhibition of tumour angiogenesis. Br J Cancer. 2003;89:1102–7.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Siddiqui RA, Harvey KA, Zaloga GP, Stillwell W. Modulation of lipid rafts by Omega-3 fatty acids in inflammation and cancer: Implications for use of lipids during nutrition support. Nutr Clin Pract. 2007;22:74–88.PubMedCrossRefGoogle Scholar
  114. 114.
    Im D-S. Omega-3 fatty acids in anti-inflammation (pro-resolution) and GPCRs. Prog Lipid Res. 2012;51:232–7.PubMedCrossRefGoogle Scholar
  115. 115.
    Fennema O. Fennema’s food chemistry. Boca Raton: CRC Press Taylor & Francis; 2008. p. 454–5.Google Scholar
  116. 116.
    Lobo GP, Hessel S, Eichinger A, et al. ISX is a retinoic acid-sensitive gatekeeper that controls intestinal beta,beta-carotene absorption and vitamin A production. FASEB J. 2010;24(6):1656–66.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Narisawa T, Reddy BS, Wong CQ, Weisburger JH. Effect of vitamin A deficiency on rat colon carcinogenesis by N-methyl -N'-nitro-N-nitrosogua- nidine. Cancer Res. 1976;36(4):1379–83.PubMedGoogle Scholar
  118. 118.
    Fuchs E, Green H. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell. 1981;25(3):617–25.PubMedCrossRefGoogle Scholar
  119. 119.
    Weinstock MA, Bingham SF, Digiovanna JJ, et al. Tretinoin and the prevention of keratinocyte carcinoma (Basal and squamous cell carcinoma of the skin): A Veterans Affairs randomized chemoprevention trial. J Invest Dermatol. 2012;132(6):1583–90.PubMedCrossRefGoogle Scholar
  120. 120.
    Zhang C, Duvic M. Retinoids: Therapeutic applications and mechanisms of action in cutaneous T-cell lymphoma. Dermatol Ther. 2003;16(4):322–30.PubMedCrossRefGoogle Scholar
  121. 121.
    Aggarwal S, Kim SW, Cheon K, Tabassam FH, Yoon JH, Koo JS. Nonclassical action of retinoic acid on the activation of the cAMP response element- binding protein in normal human bronchial epithelial cells. Mol Biol Cell. 2006;17(2):566–75.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Faria TN, Mendelsohn C, Chambon P, Gudas LJ. The targeted disruption of both alleles of RARbeta(2) in F9 cells results in the loss of retinoic acid- associated growth arrest. J Biol Chem. 1999;274(38):26783–8.PubMedCrossRefGoogle Scholar
  123. 123.
    Costa A, Formelli F, Chiesa F, Decensi A, De Palo G, Veronesi U. Prospects of chemoprevention of human cancers with the synthetic retinoid fenretinide. Cancer Res. 1994;54(7 Suppl):2032s–37ss.PubMedGoogle Scholar
  124. 124.
    Han J, Jiao L, Lu Y, Sun Z, Gu QM, Scanlon KJ. Evaluation of N-4-(hydrox- ycarbophenyl) retinamide as a cancer prevention agent and as a cancer chemotherapeutic agent. In Vivo. 1990;4(3):153–60.PubMedGoogle Scholar
  125. 125.
    Subbaramaiah K, Morris PG, Zhou XK, Morrow M, Du B, Giri D, et al. Increased Levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. Cancer Discov. 2012;2(4):356–65.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Papi A, Carolis SD, Bertoni S, Storci G, Sceberras V, Santini D, et al. PPARγ and RXR ligands disrupt the inflammatory cross-talk in the hypoxic breast cancer stem cells niche. J Cell Physiol. 2014;229(11):1595–606.PubMedCrossRefGoogle Scholar
  127. 127.
    Lotan R. Retinoids in cancer chemoprevention. FASEB J. 1996;10:1031–9.PubMedGoogle Scholar
  128. 128.
    Bouillon R, Okamura WH, Norman AW. Structure-function relationships m the vitamin D endocrine system. Endocr Rev. 1995;16:200–57.PubMedGoogle Scholar
  129. 129.
    Dietary reference intakes for thiamin, riboflavin, niacin, vitamin B 6, folate, vitamin B 12, pantothenic acid, biotin, and choline: A report of the standing committee on the scientific evaluation of dietary reference intakes and its panel on folate, other B vitamins, and choline and subcommittee on upper reference levels of nutrients. Q Rev Biol. 2003;78(3):384–5. http://www.journals.uchicago.edu/doi/abs/10.1086/380067; https://www.ncbi.nlm.nih.gov/books/NBK114310/.
  130. 130.
    Moore DD et al. International Union of Pharmacology. LXII. The NR1H and NR1I receptors: Constitutive androstane receptor, pregnene X receptor, farnesoid X receptor alpha, farnesoid X receptor beta, liver X receptor alpha, liver X receptor beta, and vitamin D receptor. Pharmacol Rev. 2006;58:742–59.PubMedCrossRefGoogle Scholar
  131. 131.
    Skowronski RJ, Peehl DM, Feldman D. Vitamin D and prostate cancer: 1,25 dihydroxyvitamin D3 receptors and actions in human prostate cancer cell lines. Endocrinology. 1993;132:1952–60.PubMedGoogle Scholar
  132. 132.
    Jiang YJ, Bikle DD. LncRNA profiling reveals new mechanism for VDR protection against skin cancer formation. J Steroid Biochem Mol Biol. 2014;144:87–90.PubMedCrossRefGoogle Scholar
  133. 133.
    Majewski S, Skopinska M, Marczak M, Szmurlo A, Bollag W, Jablonska S. Vitamin D3 is potent inhibitor of tumor cell-induced angiogenesis. Investig Dermatol Symp Proc. 1996;1(1):97–101.Google Scholar
  134. 134.
    Oikawa T, Hirotani K, Ogasawara H, Katayama T, Nakamura O, Iwaguchi T. Inhibition of angiogenesis by vitamin D3 analogues. Eur J Pharmacol. 1990;178(2):247–50.PubMedCrossRefGoogle Scholar
  135. 135.
    Majewski S, Szmurlo A, Marczak M, Jablonska S, Bollag W. Inhibition of tumor cell-induced angiogenesis by retinoids, 1,25-dihydroxyvitamin D3 and their combination. Cancer Lett. 1993;75:35–9.PubMedCrossRefGoogle Scholar
  136. 136.
    Majewski S, Marczak M, Szmurlo A, Jablonska S, Bollag W. Retinoids, Interferon α, 1,25-dihydroxyvitamin D3 and their combination inhibit angiogenesis induced by non-HPV-harboring tumor cell lines. RARα mediates the antiangiogenic effect of retinoids. Cancer Lett. 1995;89:117–24.PubMedCrossRefGoogle Scholar
  137. 137.
    Binderup L, Latini S, Binderup E, Bretting C, Calverley M, Hansen K. 20-EPI-vitamin D3 analogues: A novel class of potent regulators of cell growth and immune responses. Biochem Pharmacol. 1991;42(8):1569–75.PubMedCrossRefGoogle Scholar
  138. 138.
    James SY, Williams MA, Newland AC, Colston KW. Leukemia cell differentiation: Cellular and molecular interactions of retinoids and vitamin D. Gen Pharmacol. 1999;32:143–54.PubMedCrossRefGoogle Scholar
  139. 139.
    James SY, Mackay AG, Colston KW. Effects of 1,25 dihydroxyvitamin D3 and its analogues on induction of apoptosis in breast cancer cells. J Steroid Biochem Mol Biol. 1996;58:395–401.PubMedCrossRefGoogle Scholar
  140. 140.
    Majewski S, Marczak M, Szmurlo A, Jablonska S, Bollag W. Interleukin-12 inhibits angiogenesis induced by human tumor cell lines in vivo. J Invest Dermatol. 1996;106:1114–8.PubMedCrossRefGoogle Scholar
  141. 141.
    Majewski S, Kutner A, Jabłonska S. Vitamin D analogs in cutaneous malignancies. Curr Pharm Des. 2000;6:829–38.PubMedCrossRefGoogle Scholar
  142. 142.
    Miller NJ, Rice-Evans CA. Antioxidant activity of resveratrol in red wine. Clin Chem. 1998;41:1789.Google Scholar
  143. 143.
    Lin M-T. Inhibition of vascular endothelial growth factor-induced angiogenesis by resveratrol through interruption of Src-dependent vascular endothelial cadherin tyrosine phosphorylation. Mol Pharmacol. 2003;64(5):1029–36.PubMedCrossRefGoogle Scholar
  144. 144.
    Niles RM, Mcfarland M, Weimer MB, Redkar A, Fu Y-M, Meadows GG. Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett. 2003;190(2):157–63.PubMedCrossRefGoogle Scholar
  145. 145.
    Athar M, Back JH, Tang X, Kim KH, Kopelovich L, Bickers DR, Kim AL. Resveratrol: A review of preclinical studies for human cancer prevention. Toxicol Appl Pharmacol. 2007;224:274–83.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Wu H, Liang X, Fang Y, Qin X, Zhang Y, Liu J. Resveratrol inhibits hypoxia-induced metastasis potential enhancement by restricting hypoxia-induced factor-1α expression in colon carcinoma cells. Biomed Pharmacother. 2008;62(9):613–21.PubMedCrossRefGoogle Scholar
  147. 147.
    Yusuf N, Nasti TH, Meleth S, Elmets CA. Resveratrol enhances cell-mediated immune response to DMBA through TLR4 and prevents DMBA induced cutaneous carcinogenesis. Mol Carcinog. 2009;48(8):713–23.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Pozo-Guisado E, Merino JM, Mulero-Navarro S, Lorenzo-Benayas MJ, Centeno F, Alvarez-Barrientos A, Fernandez-Salguero PM. Resveratrol-induced apoptosis in MCF-7 human breast cancer cells involves a caspase-independent mechanism with downregulation of Bcl-2 and NF-kappaB. Int J Cancer. 2005;115:74–84.PubMedCrossRefGoogle Scholar
  149. 149.
    Kaga S, Zhan L, Matsumoto M, Maulik N. Resveratrol enhances neovascularization in the infarcted rat myocardium through the induction of thioredoxin-1, heme oxygenase-1 and vascular endothelial growth factor. J Mol Cell Cardiol. 2005;39(5):813–22.PubMedCrossRefGoogle Scholar
  150. 150.
    Harnly JM, Doherty RF, Beecher GR, Holden JM, Haytowitz DB, Bhagwat S, et al. Flavonoid content of U.S. fruits, vegetables, and nuts. J Agric Food Chem. 2006;54(26):9966–77.PubMedCrossRefGoogle Scholar
  151. 151.
    Ledda S, Sanna G, Manca G, Franco MA, Porcu A. Variability in flavonol content of grapes cultivated in two Mediterranean islands (Sardinia and Corsica). J Food Compos Anal. 2010;23(6):580–5.CrossRefGoogle Scholar
  152. 152.
    Wang H, Helliwell K. Determination of flavonols in green and black tea leaves and green tea infusions by high-performance liquid chromatography. Food Res Int. 2001;34(2-3):223–7.CrossRefGoogle Scholar
  153. 153.
    Ong KC, Khoo H-E. Biological effects of myricetin. Gen Pharmacol: Vasc Sys. 1997;29(2):121–6.CrossRefGoogle Scholar
  154. 154.
    Huang H, Chen AY, Rojanasakul Y, Ye X, Rankin GO, Chen YC. Dietary compounds galangin and myricetin suppress ovarian cancer cell angiogenesis. J Funct Foods. 2015;15:464–75.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Jung SK, Lee KW, Byun S, Lee EJ, Kim JE, Bode AM, et al. Myricetin inhibits UVB-induced angiogenesis by regulating PI-3 kinase in vivo. Carcinogenesis. 2009;31(5):911–7.PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Ghahremani MF, Goossens S, Nittner D, Bisteau X, Bartunkova S, Zwolinska A, et al. p53 promotes VEGF expression and angiogenesis in the absence of an intact p21-Rb pathway. Cell Death Differ. 2013;20(7):888–97.CrossRefGoogle Scholar
  157. 157.
    Lee KM, Kang NJ, Han JH, Lee KW, Lee HJ. Myricetin down-regulates phorbol ester-induced cyclooxygenase-2 expression in mouse epidermal cells by blocking activation of nuclear factor kappa B. J Agric Food Chem. 2007;55(23):9678–84.PubMedCrossRefGoogle Scholar
  158. 158.
    Lee KW, Kang NJ, Rogozin EA, Kim H-G, Cho YY, Bode AM, et al. Myricetin is a novel natural inhibitor of neoplastic cell transformation and MEK1. Carcinogenesis. 2007;28(9):1918–27.PubMedCrossRefGoogle Scholar
  159. 159.
    Kumamoto T, Fujii M, Hou DX. Akt is a direct target for myricetin to inhibit cell transformation. Mol Cell Biochem. 2009;332(1-2):33–41.PubMedCrossRefGoogle Scholar
  160. 160.
    Jung SK, Lee KW, Byun S, Kang NJ, Lim SH, Heo Y-S, et al. Myricetin Suppresses UVB-Induced Skin Cancer by Targeting Fyn. Cancer Res. 2008;68(14):6021–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Kumamoto T, Fujii M, Hou D-X. Myricetin directly targets JAK1 to inhibit cell transformation. Cancer Lett. 2009;275(1):17–26.PubMedCrossRefGoogle Scholar
  162. 162.
    Fried LE, Arbiser JL. Honokiol, a multifunctional antiangiogenic and antitumor agent. Antioxid Redox Signal. 2009;11(5):1139–48.PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Bai X, Cerimele F, Ushio-Fukai M, Waqas M, Campbell PM, Govindarajan B. Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J Biol Chem. 2003;278:35501–7.PubMedCrossRefGoogle Scholar
  164. 164.
    Battle TE, Arbiser J, Frank DA. Blood. 2005;106(2):690–7.PubMedCrossRefGoogle Scholar
  165. 165.
    Ahn KS, Sethi G, Shishodia S, Sung B, Arbiser JL, Aggarwal BB. Honokiol potentiates apoptosis, suppresses osteoclastogenesis, and inhibits invasion through modulation of nuclear factor-kappaB activation pathway. Mol Cancer Res. 2006;4:621–33.PubMedCrossRefGoogle Scholar
  166. 166.
    Mędra A, Witkowska M, Majchrzak A, Cebula-Obrzut B, Bonner MY. 3, Robak T. pro-apoptotic activity of new honokiol/triphenylmethane analogues in B-cell lymphoid malignancies. Molecules. 2016;21(8):995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London Ltd. 2017

Authors and Affiliations

  1. 1.Department of DermatologyEmory University School of MedicineAtlantaUSA
  2. 2.Medical College of GeorgiaAugustaUSA
  3. 3.Department of DermatologyEmory University School of Medicine and Atlanta VA Medical CenterAtlantaUSA

Personalised recommendations