Composite Fracture

Chapter
Part of the Engineering Materials and Processes book series (EMP)

Abstract

When a DFRC is acted upon by an external load, the initial response of the DFRC to the external load is regulated by elastic stress transfer mechanism. When the DFRC yields, intermediate modes of failures occur and these modes regulate the yielding behaviour of the DFRC. Thereafter plastic stress transfer occurs; the matrix is largely in a plastic state while the fibres are in an elastic state. As the external load increases, eventually the fibres yield and DFRC becomes a plastic composite. In the final stage, other modes of failure, namely fibre pull-out, fibre rupture and matrix rupture, occur during the loading process, resulting in a complete fracture of the DFRC. This chapter presents simple order-of-magnitude estimates of the energies associated with the processes of fibre pull-out, fibre rupture and matrix rupture in the run-up to composite rupture. Mathematical models for the total work of fracture of the DFRC are presented to indicate how the respective processes contribute to total energy for fracturing the DFRC.

Keywords

Fibre reinforced composites Fibre pull-out Fibre rupture Matrix rupture Work of fracture Probabilistic fracture 

References

  1. 1.
    Goh KL, Aspden RM, Hukins DWL. Review: finite element analysis of stress transfer in short-fibre composite materials. Compos Sci Technol. 2004;64:1091–100.CrossRefGoogle Scholar
  2. 2.
    Kelly A, Macmillan NH. Strong solids. 3rd ed. Oxford: Oxford University Press; 1986.Google Scholar
  3. 3.
    Bennett JA, Young RJ. The effect of fibre–matrix adhesion upon crack bridging in fibre reinforced composites. Compos Part A. 1998;29A:1071–81.CrossRefGoogle Scholar
  4. 4.
    Agarwal BD, Broutman LJ, Chandrashekhara K. Analysis and performance of fiber composites. 3rd ed. New Jersey: Wiley; 2006.Google Scholar
  5. 5.
    Laws V. Stress/strain curve of fibrous composites. J Mater Sci Lett. 1987;6:675–8.CrossRefGoogle Scholar
  6. 6.
    Aveston J, Kelly A. Tensile first cracking strain and strength of hybrid composites and laminates. Philos Trans R Soc Lond Ser A Math Phys Sci. 1980;294:519–34.CrossRefGoogle Scholar
  7. 7.
    Cooper GA, Kelly A. Tensile properties of fibre-reinforced metals: fracture mechanics. J Mech Phys Solids. 1967;15:279–97.CrossRefGoogle Scholar
  8. 8.
    Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K. Physical interactions at carbon nanotube–polymer interface. Polymer (Guildf). 2003;44:7757–64.CrossRefGoogle Scholar
  9. 9.
    Liao K, Li S. Interfacial characteristics of a carbon nanotube–polystyrene composite system. Appl Phys Lett. 2001;79:4225–7.CrossRefGoogle Scholar
  10. 10.
    Goh KL, Aspden RM, Mathias KJ, Hukins DWL. Finite-element analysis of the effect of material properties and fibre shape on stresses in an elastic fibre embedded in an elastic matrix in a fibre-composite material. Proc R Soc Lond A. 2004;460:2339–52.CrossRefGoogle Scholar
  11. 11.
    Goh KL, Meakin JR, Hukins DWL. Influence of fibre taper on the interfacial shear stress in fibre-reinforced composite materials during elastic stress transfer. Compos Interfaces. 2010;17:75–81.CrossRefGoogle Scholar
  12. 12.
    Goh KL, Huq AMA, Aspden RM, Hukins DWL. Nano-fibre critical length depends on shape. Adv Compos Lett. 2008;17:131–3.Google Scholar
  13. 13.
    Ng XW, Hukins DWL, Goh KL. Influence of fibre taper on the work of fibre pull-out in short fibre composite fracture. J Mater Sci. 2010;45:1086–90.CrossRefGoogle Scholar
  14. 14.
    Goh KL, Meakin JR, Aspden RM, Hukins DWL. Stress transfer in collagen fibrils reinforcing connective tissues: Effects of collagen fibril slenderness and relative stiffness. J Theor Biol. 2007;245:305–11.CrossRefGoogle Scholar
  15. 15.
    Goh KL, Meakin JR, Aspden RM, Hukins DWL. Influence of fibril taper on the function of collagen to reinforce extracellular matrix. Proc R Soc Lond B. 2005;272:1979–83.CrossRefGoogle Scholar
  16. 16.
    DeVente JE, Lester GE, Trotter JA, Dahners LE. Isolation of intact collagen fibrils from healing ligament. J Electron Microsc (Tokyo). 1997;46:353–6.CrossRefGoogle Scholar
  17. 17.
    Trotter JA, Tipper J, Lyons-Levy G, Chino K, Heuer AH, Liu Z, et al. Towards a fibrous composite with dynamically controlled stiffness: lessons from echinoderms. Biotechnol Extracell Matrix. 2000;1998:357–62.Google Scholar
  18. 18.
    Trotter JA, Koob TJ. Collagen and proteoglycan in a sea urchin ligament with mutable mechanical properties. Cell Tissue Res. 1989;258:527–39.CrossRefGoogle Scholar
  19. 19.
    Wagner HD, Lustiger A. Optimized toughness of short fiber-based composites: the effect of fiber diameter. Compos Sci Technol. 2009;69:1323–5.CrossRefGoogle Scholar
  20. 20.
    Wagner HD, Ajayan PM, Schulte K. Nanocomposite toughness from a pull-out mechanism. Compos Sci Technol. 2013;83:27–31.CrossRefGoogle Scholar
  21. 21.
    Wichmann MHG, Schulte K, Wagner HD. On nanocomposite toughness. Compos Sci Technol. 2008;68:329–31.CrossRefGoogle Scholar
  22. 22.
    Piggott M. Load bearing fibre composites. 2nd ed. Berlin: Kluwer Academic Publishers; 2002.Google Scholar
  23. 23.
    Marston TU, Atkins AG, Felbeck DK. Interfacial fracture energy and the toughness of composites. J Mater Sci. 1974;5:273–4.Google Scholar
  24. 24.
    Wisnom MR, Green D. Tensile failure due to interaction between fibre breaks. Composites. 1995;26:499–508.CrossRefGoogle Scholar
  25. 25.
    Wisnom MR. Size effects in the testing of fibre-composite materials. Compos Sci Technol. 1999;59:1937–57.CrossRefGoogle Scholar
  26. 26.
    Tian W, Qi L, Zhou J, Guan J. Effects of the fiber orientation and fiber aspect ratio on the tensile strength of Csf/Mg composites. Comput Mater Sci. 2014;89:6–11.CrossRefGoogle Scholar
  27. 27.
    Petersen RC, Lemons JE, Mccracken MS. Stress-Transfer micromechanics for fiber length with a photocure vinyl ester composite. Polym Compos. 2006;27:153–69.CrossRefGoogle Scholar
  28. 28.
    Pegoretti A, Della Volpe C, Detassis M, Migliaresi C. Thermomechanical behaviour of interfacial region in carbon fibre/epoxy composites. Compos Part A. 1996;27A:1067–74.CrossRefGoogle Scholar
  29. 29.
    Zussman E, Chen X, Ding W, Calabri L, Dikin DA, Quintana JP, et al. Mechanical and structural characterization of electrospun PAN-derived carbon nanofibers. Carbon N Y. 2005;43:2175–85.CrossRefGoogle Scholar
  30. 30.
    Kim J, Mai Y. High strength, high fracture toughness fibre composites with interface control—A review. Compos Sci Technol. 1991;41:333–78.CrossRefGoogle Scholar
  31. 31.
    Atkins AG. Intermittent bonding for high toughness/high strength composites. J Mater Sci. 1975;10:819–32.CrossRefGoogle Scholar
  32. 32.
    Wouterson EM, Boey FYC, Hu X, Wong SC. Effect of fiber reinforcement on the tensile, fracture and thermal properties of syntactic foam. Polymer (Guildf). 2007;48:3183–91.CrossRefGoogle Scholar
  33. 33.
    Lauke B, Schultrich B. Calculation of fracture work of short-glass-fibre reinforced polyethylene for static and dynamic loading rates. Compos Sci Technol. 1986;26:1–16.CrossRefGoogle Scholar
  34. 34.
    Lauke B, Schultrich B. Deformation behaviour of short-fibre reinforced materials with debonding interfaces. Fibre Sci Technol. 1983;19:111–26.CrossRefGoogle Scholar
  35. 35.
    Lauke B, Schultricht B, Barthel R. Contribution to the micromechanical interpretation of fracture work of short-fibre-reinforced thermoplastics. Compos Sci Technol. 1985;23:21–35.CrossRefGoogle Scholar
  36. 36.
    Lawrence P. Some theoretical considerations of fibre pull-out from an elastic matrix variation of fibre load. J Mater Sci Lett. 1972;7:1–6.CrossRefGoogle Scholar
  37. 37.
    Robinson IM, Robinson JM. The influence of fibre aspect ratio on the deformation of discontinuous fibre-reinforced composites. J Mater Sci. 1994;29:4663–77.CrossRefGoogle Scholar
  38. 38.
    McMeeking RM, Evans AG. Mechanics of transformation-toughening in brittle materials. J Am Ceram Soc. 1982;65:242–6.CrossRefGoogle Scholar
  39. 39.
    Goh KL, Holmes DF, Lu Y, Purslow PP, Kadler KE, Bechet D, et al. Bimodal collagen fibril diameter distributions direct age-related variations in tendon resilience and resistance to rupture. J Appl Physiol. 2012;113:878–88.CrossRefGoogle Scholar
  40. 40.
    Jones BH. Probabilistic design and reliability. In: Chamis CC, editor. Structural design and analysis part II. New York: Academic Press; 1974. p. 34–73.Google Scholar
  41. 41.
    Buana SASM, Pasbaskhsh P, Goh KL, Bateni F, Haris MRHM. Elasticity, microstructure and thermal stability of foliage and fruit fibres from four tropical crops. Fibers Polym. 2013;14:623–9.CrossRefGoogle Scholar
  42. 42.
    Fong TC, Saba N, Liew CK, De Silva R, Hoque ME, Goh KL. Yarn flax fibres for polymer-coated sutures and hand layup polymer composite laminates. In: Salit MS, Jawaid M, Yusoff NB, Hoque ME, editors. Manufacturing of natural fibre reinforced polymer composites. Berlin: Springer; 2015. p. 155–75.CrossRefGoogle Scholar
  43. 43.
    Lai W, Goh K. Consequences of ultra-violet irradiation on the mechanical properties of spider silk. J Funct Biomater. 2015;6:901–16.CrossRefGoogle Scholar
  44. 44.
    Chew SL, Wang K, Chai SP, Goh KL. Elasticity, thermal stability and bioactivity of polyhedral oligomeric silsesquioxanes reinforced chitosan-based microfibres. J Mater Sci Mater Med. 2011;22:1365–74.CrossRefGoogle Scholar
  45. 45.
    Xie JZ, Hein S, Wang K, Liao K, Goh KL. Influence of hydroxyapatite crystallization temperature and concentration on stress transfer in wet-spun nanohydroxyapatite-chitosan composite fibres. Biomed Mater. 2008;3:2–6.Google Scholar
  46. 46.
    Wang K, Loo LS, Goh KL. A facile method for processing lignin reinforced chitosan biopolymer microfibres: optimising the fibre mechanical properties through lignin type and concentration. Mater Res Express. 2016;3:035301.CrossRefGoogle Scholar
  47. 47.
    Wang K, Liao K, Goh KL. How sensitive is the elasticity of hydroxyapatite-nanoparticle-reinforced chitosan composite to changes in particle concentration and crystallization temperature? J Funct Biomater. 2015;6:986–98.CrossRefGoogle Scholar
  48. 48.
    Dobrza LA. Significance of materials science for the future development of societies. J Mater Process Technol. 2006;175:133–48.CrossRefGoogle Scholar
  49. 49.
    Piggott M. Load bearing fibre composites. 2nd ed. Kluwer Academic Publishers; 2002.Google Scholar
  50. 50.
    Goh KL, Hukins DWL, Aspden RM. Critical length of collagen fibrils in extracellular matrix. J Theor Biol. 2003;223:259–61.Google Scholar
  51. 51.
    Goh KL, Listrat A, Bechet D. Hierarchical mechanics of connective tissues: Integrating insights from nano to macroscopic studies, J Biomed Nanotechnol. 2014;10:2464–507.Google Scholar
  52. 52.
    Goh KL, Tan LP. Micromechanical fibre-recruitment model of liquid crystalline polymer reinforcing polycarbonate composites. In: Tamin M, editor. Damage and fracture of composite materials and structures 8611 micromechanical. Berlin: Springer-Verlag; 2011. p. 85–106Google Scholar
  53. 53.
    Xie JZ, Hein S, Wang K, Liao K, Goh KL. Influence of hydroxyapatite crystallization temperature and concentration on stress transfer in wet-spun nanohydroxyapatite-chitosan composite fibres. Biomed Mater. 2008;3:025014.Google Scholar
  54. 54.
    Chew SL, Wang K, Chai SP, Goh KL. Elasticity, thermal stability and bioactivity of polyhedral oligomeric silsesquioxanes reinforced chitosan-based microfibres, J Mater Sci: Mater Med. 2011;22:1365–74.Google Scholar
  55. 55.
    Mohonee VK, Goh KL. Effects of fibre-fibre interaction on stress uptake in discontinuous fibre reinforced composites. Compos Part B. 2016;86:221–28.Google Scholar
  56. 56.
    De Silva R, Pasbakhsh P, Goh KL, Chai SP, Ismail H. Physico-chemical characterisation of chitosan/halloysite composite membranes. Polym Testing. 2003;32:265–71.Google Scholar
  57. 57.
    De Silva RT, Pasbakhsh P, Goh KL, Chai SP, Chen J. Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. J Compos Mater. 2014a;48:3705–17.Google Scholar
  58. 58.
    De Silva R, Pasbakhsh P, Goh KL, Mishnaevsky L. 3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis. Polym. 2014b;55(24):6418–25.Google Scholar
  59. 59.
    De Silva R, Pasbakhsh P, Qureshi AJ, Gibson AG, Goh KL. Stress transfer and fracture in nanostructured particulate-reinforced chitosan biopolymer composites: influence of interfacial shear stress and particle slenderness. Compos Interfaces. 2014c;21:807–18.Google Scholar
  60. 60.
    De Silva RT, Soheilmoghaddam M, Goh KL, Wahit MU, Hamid Bee SA, Chai SP, Pasbakhsh P. Influence of the processing methods on the properties of poly (lactic acid)/halloysite nanocomposites. Polymer Compos. 2016;37:861–69.Google Scholar
  61. 61.
    Huq AMA, Goh KL, Zhou ZR, Liao K. On defect interactions in axially loaded single-walled carbon nanotubes. J Appl Phys. 2008;103:054306.Google Scholar
  62. 62.
    Huq AMA, Bhuiyan AK, Liao K, Goh KL. Defect-defect interaction in single-walled carbon nanotubes under torsional loading. Int J Mod Phys B. 2010;24:1215–26.Google Scholar
  63. 63.
    Goh KL, Liew SC, Hasegawa BH. Energy-dependent systematic errors in dual-energy X-ray CT. IEEE Trans Nucl Sci. 1997a;44:212–7.Google Scholar
  64. 64.
    Goh KL, Liew SC, Hasegawa BH. Correction of energy-dependent systematic errors in dual-energy X-ray CT using a basis material coefficients transformation method. IEEE Trans Nucl Sci 1997b;44:2419–24.Google Scholar

Copyright information

© Springer-Verlag London 2017

Authors and Affiliations

  1. 1.School of Mechanical and Systems EngineeringNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations