Skip to main content

Reinforcing by Fibres

  • Chapter
  • First Online:
Discontinuous-Fibre Reinforced Composites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 863 Accesses

Abstract

The term fibre reinforced composite is popularly used to refer to a material that is made up of fibres embedded in a matrix material. This chapter is concerned with discontinuous fibre-reinforced composites (DFRCs). It provides fundamental explanations for why we can use short and thin fibres for reinforcing a material, including the basis of the theoretical shear strength at the fibre-matrix interface and the theoretical fibre cleavage strength. It introduces an overview of how short fibres can be manufactured. Finally it highlights the topics that are covered in this book, namely the mechanisms of stress transfer and fracture in DFRCs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agarwal BD, Broutman LJ, Chandrashekhara K. Analysis and performance of fiber composites. 3rd ed. New Jersey: Wiley; 2006.

    Google Scholar 

  2. Kelly A, Macmillan NH. Strong solids. 3rd ed. Oxford: Oxford University Press; 1986.

    Google Scholar 

  3. Piggott M. Load bearing fibre composites. 2nd ed. New York: Kluwer; 2002.

    Google Scholar 

  4. Herakovich CT. Mechanics of composites: a historical review. Mech Res Commun. 2012;41:1–20.

    Article  Google Scholar 

  5. Goh KL, Aspden RM, Hukins DWL. Review: finite element analysis of stress transfer in short-fibre composite materials. Compos Sci Technol. 2004;64:1091–100.

    Article  Google Scholar 

  6. Sathishkumar TP, Satheeshkumar S, Naveen J. Glass fiber-reinforced polymer composites—a review. J Reinf Plast Compos. 2014;33:1258–75.

    Article  Google Scholar 

  7. Martinez-Jequier J, Gallego A, Suarez E, Juanes FJ, Valea A. Real-time damage mechanisms assessment in CFRP samples via acoustic emission Lamb wave modal analysis. Compos Part B Eng. 2014;68:317–26.

    Article  Google Scholar 

  8. Visco AM, Calabrese L, Cianciafara P. Modification of polyester resin based composites induced by seawater absorption. Compos A Appl Sci Manuf. 2008;39:805–14.

    Article  Google Scholar 

  9. Fu SY, Lauke B, Mäder E, Yue CY, Hu X. Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Compos A Appl Sci Manuf. 2000;31:1117–25.

    Article  Google Scholar 

  10. Norman DA, Robertson RE. The effect of fiber orientation on the toughening of short fiber-reinforced polymers. J Appl Polym Sci. 2003;90:2740–51.

    Article  Google Scholar 

  11. Hariharan ABA, Khalil HPSA. Lignocellulose-based hybrid bilayer laminate composite: Part I—studies on tensile and impact behavior of oil palm fiber-glass fiber-reinforced epoxy resin. J Compos Mater. 2005;39:663–84.

    Article  Google Scholar 

  12. Seshadri M, Saigal S, Asce F. Crack bridging in polymer nanocomposites. J Eng Mech. 2007;133:911–8.

    Article  Google Scholar 

  13. Yao J, Yu W. Tensile strength and its variation for PAN-based carbon fibers. II. Calibration of the variation from testing. J Appl Polym Sci. 2006;104:2625–32.

    Article  Google Scholar 

  14. Sode K, Sato T, Tanaka M. Carbon nanofibers prepared from electrospun polyimide, polysulfone and polyacrylonitrile nanofibers by ion beam irradiation. Polym J. 2013;45:1210–5.

    Article  Google Scholar 

  15. Blassiau S, Thionnet A, Bunsell AR. Micromechanisms of load transfer in a unidirectional carbon fibre-reinforced epoxy composite due to fibre failures: Part 3. Multiscale reconstruction of composite behaviour. Compos Struct. 2008;83:312–23.

    Article  Google Scholar 

  16. Gunawan FE, Homma H, Brodjonegoro SS, Baseri Hudin A, Bin Zainuddin AB. Mechanical properties of oil palm empty fruit bunch fibre. J Solid Mech Mater Eng. 2009;3:943–51.

    Article  Google Scholar 

  17. Kalam A, Sahari BB, Khalid YA, Wong SV. Fatigue behaviour of oil palm fruit bunch fibre/epoxy and carbon fibre/epoxy composites. Compos Struct. 2005;71:34–44.

    Article  Google Scholar 

  18. Wirjosentono B, Guritno P, Ismail H. Oil palm empty fruit bunch filled polypropylene composites. Int J Polym Mater Polym Biomater. 2004;53:295–306.

    Article  Google Scholar 

  19. Venkateshwaran N, Elayaperumal A, Sathiya GK. Prediction of tensile properties of hybrid-natural fiber composites. Compos Part B. 2012;43:793–6.

    Article  Google Scholar 

  20. Figeys W, Schueremans L, Van Gemert D, Brosens K. A new composite for external reinforcement: Steel cord reinforced polymer. Constr Build Mater. 2008;22(9):1929–38.

    Article  Google Scholar 

  21. Srivatsan TS, Lam PC, Krause J. Impact toughness characteristics of steel wire-reinforced polymer composites. Mater Lett. 1999;39(6):324–8.

    Article  Google Scholar 

  22. Kelly A, Tyson WR. Tensile properties of fibre-reinforced metals: copper/tungsten and copper/molybdenum. J Mech Phys Soilds. 1965;13:329–50.

    Article  Google Scholar 

  23. Warren R, Andersson CH, Larsson LO. Fibre/matrix interactions in a tungsten alloy wire-reinforced stainless steel composite. Composites. 1979;10:121–5.

    Article  Google Scholar 

  24. Riesch J, Han Y, Almanstötter J, Coenen JW, Höschen T, Jasper B, et al. Development of tungsten fibre-reinforced tungsten composites towards their use in DEMO-potassium doped tungsten wire. Phys Scr. 2016;T167:014006.

    Article  Google Scholar 

  25. Salomão R, Brandi J. Macrostructures with hierarchical porosity produced from alumina–aluminum hydroxide–chitosan wet-spun fibers. Ceram Int. 2013;39:8227–35.

    Article  Google Scholar 

  26. Wagner HD, Lustiger A. Optimized toughness of short fiber-based composites: the effect of fiber diameter. Compos Sci Technol. 2009;69:1323–5.

    Article  Google Scholar 

  27. Canetti M, Bertini F. Supermolecular structure and thermal properties of poly(ethylene terephthalate)/lignin composites. Compos Sci Technol. 2007;67:3151–7.

    Article  Google Scholar 

  28. De Silva R, Pasbakhsh P, Qureshi AJ, Gibson AG, Goh KL. Stress transfer and fracture in nanostructured particulate-reinforced chitosan biopolymer composites: influence of interfacial shear stress and particle slenderness. Compos Interface. 2014;21:807–18.

    Article  Google Scholar 

  29. Xie JZ, Hein S, Wang K, Liao K, Goh KL. Influence of hydroxyapatite crystallization temperature and concentration on stress transfer in wet-spun nanohydroxyapatite–chitosan composite fibres. Biomed Mater. 2008;3:2–6.

    Google Scholar 

  30. Govindasamy K, Fernandopulle C, Pasbakhsh P, Goh KL. Synthesis and characterisation of electrospun chitosan membranes reinforced by halloysite nanotubes. J Mech Med Biol. 2014;14:1450058.

    Article  Google Scholar 

  31. Chew SL, Wang K, Chai SP, Goh KL. Elasticity, thermal stability and bioactivity of polyhedral oligomeric silsesquioxanes reinforced chitosan-based microfibres. J Mater Sci Mater Med. 2011;22:1365–74.

    Article  Google Scholar 

  32. Chawla N, Chawla KK. Microstructure-based modeling of the deformation behavior of particle reinforced metal matrix composites. J Mater Sci. 2006;41:913–25.

    Article  Google Scholar 

  33. Romanova VA, Balokhonov RR, Schmauder S. The influence of the reinforcing particle shape and interface strength on the fracture behavior of a metal matrix composite. Acta Mater. 2009;57:97–107.

    Article  Google Scholar 

  34. Karger-kocsis J, Mahmood H, Pegoretti A. Recent advances in fiber/matrix interphase engineering for polymer composites. Prog Mater Sci. 2015;73:1–43.

    Article  Google Scholar 

  35. Fu SY, Feng XQ, Lauke B, Mai YW. Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate-polymer composites. Compos Part B Eng. 2008;39:933–61.

    Article  Google Scholar 

  36. Kim J, Mai Y. High strength, high fracture toughness fibre composites with interface control—a review. Compos Sci Technol. 1991;41:333–78.

    Article  Google Scholar 

  37. Cottrell AH. Strong solids. Proc R Soc Lond A. 1964;282:2–9.

    Article  Google Scholar 

  38. Al-saleh MH, Sundararaj U. Review of the mechanical properties of carbon nanofiber/polymer composites. Compos Part A. 2011;42:2126–42.

    Article  Google Scholar 

  39. Ehrburger P, Donnet JB. Interface in composite materials. Philos Trans R Soc A Math Phys Eng Sci. 1980;294:495–505.

    Article  Google Scholar 

  40. Orowan E. Fracture and strength of solids. Rep Prog Phys. 1949;12:185–232.

    Article  Google Scholar 

  41. Gu Y, Li M, Wang J, Zhang Z. Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon N Y. 2010;48:3229–35.

    Article  Google Scholar 

  42. Tan LP, Joshi SC, Yue CY, Lam YC, Hu X, Tam KC. Effect of shear heating during injection molding on the morphology of PC/LCP blends. Acta Mater. 2003;51:6269–76.

    Article  Google Scholar 

  43. Tan LP, Yue CY, Tam KC, Lam YC, Hu X, Nakayama K. Relaxation of liquid-crystalline polymer fibers in polycarbonate–liquid-crystalline polymer blend system. J Polym Sci B Polym Phys. 2003;41:2307–12.

    Article  Google Scholar 

  44. Tan LP, Yue CY, Tam KC, Lam YC, Hu X. Effect of compatibilization in injection-molded polycarbonate and liquid crystalline polymer blend. J Appl Polym Sci. 2002;84:568–75.

    Article  Google Scholar 

  45. Tan LP, Yue CY, Tam KC, Lam YC, Hu X. Effects of shear rate, viscosity ratio and liquid crystalline polymer content on morphological and mechanical properties of polycarbonate and LCP blends. Polym Int. 2002;51:398–405.

    Article  Google Scholar 

  46. Goh KL, Tan LP. Micromechanical fibre-recruitment model of liquid crystalline polymer reinforcing polycarbonate composites. In: Tamin M, editor. Damage and fracture of composite materials and structures 8611 micromechanical. Berlin: Springer; 2011. p. 85–106.

    Google Scholar 

  47. Campbell FC. Structural composite materials. Materials Park: ASM International; 2010.

    Google Scholar 

  48. Makaremi M, De Silva RT, Pasbakhsh P. Electrospun nanofibrous membranes of polyacrylonitrile/halloysite with superior water filtration ability. J Phys Chem C. 2015;119:7949–58.

    Article  Google Scholar 

  49. Govindasamy K, Pasbakhsh P, Goh KL. Current research on chitosan–halloysite composites. In: Pasbakhsh P, Churchman GJ, editors. Natural mineral nanotubes. Boca Raton: CRC Press; 2015. p. 498.

    Google Scholar 

  50. Goh KL, Meakin JR, Aspden RM, Hukins DWL. Stress transfer in collagen fibrils reinforcing connective tissues: effects of collagen fibril slenderness and relative stiffness. J Theor Biol. 2007;245:305–11.

    Article  Google Scholar 

  51. Goh KL, Hukins DWL, Aspden RM. Critical length of collagen fibrils in extracellular matrix. J Theor Biol. 2003;223:259–61.

    Article  Google Scholar 

  52. Goh KL, Meakin JR, Aspden RM, Hukins DWL. Influence of fibril taper on the function of collagen to reinforce extracellular matrix. Proc R Soc Lond B. 2005;272:1979–83.

    Article  Google Scholar 

  53. Goh KL, Listrat A, Béchet D. Hierarchical mechanics of connective tissues: integrating insights from nano to macroscopic studies. J Biomed Nanotechnol. 2014;1(10):2464–507.

    Article  Google Scholar 

  54. Goh KL, Aspden RM, Mathias KJ, Hukins DWL. Effect of fibre shape on the stresses within fibres in fibre-reinforced composite materials. Proc R Soc Lond A. 1999;455:3351–61.

    Article  Google Scholar 

  55. Goh KL, Aspden RM, Mathias KJ, Hukins DWL. Finite-element analysis of the effect of material properties and fibre shape on stresses in an elastic fibre embedded in an elastic matrix in a fibre-composite material. Proc R Soc Lond A. 2004;460:2339–52.

    Article  Google Scholar 

  56. Goh KL, Mathias KJ, Aspden RM, Hukins DWL. Finite element analysis of the effect of fibre shape on stresses in an elastic fibre surrounded. J Mater Sci. 2000;5:2493–7.

    Article  Google Scholar 

  57. Goh KL, Meakin JR, Hukins DWL. Influence of fibre taper on the interfacial shear stress in fibre-reinforced composite materials during elastic stress transfer. Compos Interfaces. 2010;17:75–81.

    Article  Google Scholar 

  58. Goh KL, Huq AMA, Aspden RM, Hukins DWL. Nano-fibre critical length depends on shape. Adv Compos Lett. 2008;17:131–3.

    Google Scholar 

  59. Wang HW, Zhou HW, Peng RD, Mishnaevsky L. Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos Sci Technol. 2011;71:980–8.

    Article  Google Scholar 

  60. Liu H, Brinson LC. Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Technol. 2008;68:1502–12.

    Article  Google Scholar 

  61. Mortazavi B, Baniassadi M, Bardon J, Ahzi S. Modeling of two-phase random composite materials by finite element, Mori–Tanaka and strong contrast methods. Compos B. 2013;45:1117–25.

    Article  Google Scholar 

  62. De Silva RT, Pasbakhsh P, Goh KL, Chai SP, Ismail H. Physico-chemical characterisation of chitosan/halloysite composite membranes. Polymer Testing, 2013;32(2):265–71.

    Google Scholar 

  63. De Silva RT, Pasbakhsh P, Goh KL, Chai SP, Chen J. Synthesis and characterisation of poly (lactic acid)/halloysite bionanocomposite films. J Comp Mater. 2014a;48(30):3705–717.

    Google Scholar 

  64. De Silva RT, Pasbakhsh P, Goh KL, Mishnaevsky L. 3-D computational model of poly (lactic acid)/halloysite nanocomposites: Predicting elastic properties and stress analysis. Polymer. 2014b;55(24):6418–425.

    Google Scholar 

  65. De Silva RT, Soheilmoghaddam M, Goh KL, Wahit MU, Hamid Bee SA, Chai SP, Pasbakhsh P. Influence of the processing methods on the properties of poly (lactic acid)/halloysite nanocomposites. Polym Compo. 2016;37:861–69.

    Google Scholar 

  66. Ng XW, Hukins DWL, Goh KL. Influence of fibre taper on the work of fibre pull-out in short fibre composite fracture. J Mater Sci. 2010;45:1086–90.

    Google Scholar 

  67. Huq AMA, Goh KL, Zhou ZR, Liao K. On defect interactions in axially loaded single-walled carbon nanotubes. J Appl Phys. 2008;103:054306.

    Google Scholar 

  68. Huq AMA, Bhuiyan AK, Liao K, Goh KL. Defect-defect interaction in single-walled carbon nanotubes under torsional loading. Int J Mod Phys B. 2010;24:1215–226.

    Google Scholar 

  69. Ren Y, Xiao T, Liao K. Time-dependent fracture behavior of single-walled carbon nanotubes with and without Stone-Wales defects. Phys Rev B. 2006;74:045410.

    Google Scholar 

  70. Wong M, Paramsothy M, Xu XJ, Ren Y, Li S, Liao K. Physical interactions at carbon nanotube-polymer interface. Polym. 2003;44:7757–764.

    Google Scholar 

  71. Goh KL, Aspden RM, Hukins DWL. Shear lag models for stress transfer from an elastic matrix to a fibre in a composite material, I J Mater Struct Integrity. 2007;1(1–3):180–89.

    Google Scholar 

  72. Mohonee VK, Goh KL. Effects of fibre-fibre interaction on stress uptake in discontinuous fibre reinforced composites. Comp Part B. 2016;86:221–28.

    Google Scholar 

  73. Buana SASM, Pasbaskhsh P, Goh KL, Bateni F, Haris MRHM. Elasticity, microstructure and thermal stability of foliage and fruit fibres from four tropical crops. Fibers Polym. 2013;14:623–29.

    Google Scholar 

  74. Fong TC, Saba N, Liew CK, De Silva R, Hoque ME, Goh KL. Yarn flax fibres for polymer-coated sutures and hand layup polymer composite laminates. In: Salit MS, Jawaid M, Yusoff NB, Hoque ME, editors. Manufacturing of natural fibre reinforced polymer composites. Berlin: Springer; 2015. p. 155– 75.

    Google Scholar 

  75. Lai WL, Goh KL, Consequences of ultra-violet irradiation on the mechanical properties of spider silk. J Funct Biomater. 2015;6:901–16.

    Google Scholar 

  76. Wang K, Liao K, Goh KL, How sensitive is the elasticity of hydroxyapatite-nanoparticle- reinforced chitosan composite to changes in particle concentration and crystallization temperature? J Funct Biomater. 2015;6:986–98.

    Google Scholar 

  77. Goh KL, Tan LP. Micromechanical fibre-recruitment model of liquid crystalline polymer reinforcing polycarbonate composites. In: Tamin M, editor. Damage and fracture of composite materials and structures. Berlin: Springer-Verlag; 2011. p. 85–1

    Google Scholar 

  78. Yeo YL, Goh KL, Liao K, Wang HJ, Listrat A, Bechet D. Structure-property relationship of burn collagen reinforcing musculo- skeletal tissues. Key Eng Mater. 2011;478:87–92.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kheng Lim Goh .

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag London

About this chapter

Cite this chapter

Goh, K.L. (2017). Reinforcing by Fibres. In: Discontinuous-Fibre Reinforced Composites. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-7305-2_1

Download citation

Publish with us

Policies and ethics