Skip to main content

Current Concepts and Management of Severely Traumatized Tissues in the Inner Coatings (the Anterior Segment: Anterior Chamber Structures, the Iris, and the Lens) of the Globe: Non-mechanical Injuries

  • Chapter
  • First Online:
Current Concepts and Management of Eye Injuries
  • 464 Accesses

Abstract

Chemical agents that are often found in the home or workplace can cause severe ocular injuries. The proportion of ocular burns among eye injuries ranges between 7 and 18 % (Merle et al. 2008). Most (84 %) are chemical burns, while thermal burns represent 16 % of ocular burn cases. Approximately 15–20 % of facial burn cases have a secondary ocular injury. Burns are not age or gender specific, but younger age groups and males even in children appear to be more at risk (Acar et al. 2011). These groups may be more exposed to/engaged in situations/vocations with a high risk for ocular injury. Chemical injuries represent 11.5–22.1 % of all ocular traumas (Clare et al. 2012). They may occur under diverse circumstances and in various locations such as in the workplace, at home, or in school and may lead to significant loss of vision and even blindness as a result of devastating and irreversible anterior segment damages (Trudo and Rimm 2003; Schrage and Kuhn 2008). Most of the chemical injuries are limited to the superficial cornea and conjunctiva (see Chap. 3) due to the presence of a fast eyelid reflex and/or the Bell phenomenon. In addition, the injured patient usually washes his/her eyes with water by themselves or with the help of another person. In rare instances, serious injuries may have a worse prognosis, involving even unilateral or bilateral blindness. The most crucial factors in determining the visual outcome involve the contact time of the agent with the eye and the characteristics of the chemical agent such as volume, concentration, pH, and the transition rate from the cornea. Alkaline chemicals, which can penetrate the eye more easily compared to acid chemicals, can cause more damage to the iris, ciliary body, and lens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acar U, Tok OY, Acar DE, et al. A new ocular trauma score in pediatric penetrating eye injuries. Eye (Lond). 2011;25(3):370–4.

    Article  CAS  Google Scholar 

  • Bae EJ, Hong IH, Park SP, et al. Overview of ocular complications in patients with electrical burns: an analysis of 102 cases across a 7-year period. Burns. 2013;39(7):1380–5.

    Article  PubMed  Google Scholar 

  • Barkana Y, Belkin M, Kuhn F. Electromagnetic trauma. In: Kuhn F, editor. Ocular traumatology. New York: Springer; 2008. p. 501–12.

    Chapter  Google Scholar 

  • Boozalis GT, Purdue GF, Hunt JL, McCulley JP. Ocular changes from electrical burn injuries. A literature review and report of cases. J Burn Care Rehabil. 1991;12(5):458–62.

    Article  CAS  PubMed  Google Scholar 

  • Clare G, Suleman H, Bunce C, Dua H. Amniotic membrane transplantation for acute ocular burns. Cochrane Database Syst Rev. 2012;(9):CD009379.

    Google Scholar 

  • Choplin NT. Glaucoma associated with ocular trauma. In: Thach AB, editor. Ophthalmic care of the combat casualty. Washington, DC: Storming Media; 2003. p. 185–94.

    Google Scholar 

  • Donshik PC, Berman MB, Dohlman CH, et al. The effect of topical corticosteroids on corneal ulceration in alkali-burned corneas. Arch Ophthalmol. 1978;96:2117–20.

    Article  CAS  PubMed  Google Scholar 

  • Kuckelkorn R, Makropoulos W, Kottek A, Reim M. Retrospective study of severe alkali burns of the eyes. Klin Monbl Augenheilkd. 1993;203(6):397–402.

    Article  CAS  PubMed  Google Scholar 

  • Kuckelkorn R, Kottek A, Schrage N, Reim M. Poor prognosis of severe chemical and thermal eye burns: the need for adequate emergency care and primary prevention. Int Arch Occup Environ Health. 1995;67(4):281–4.

    Article  CAS  PubMed  Google Scholar 

  • Kuhn F, Morris R, Witherspoon CD, et al. A standardized classification of ocular trauma. Ophthalmology. 1996;103(2):240–3.

    Article  CAS  PubMed  Google Scholar 

  • Matelis KH, Congdon N. Glaucoma. In: Kuhn F, Pieramici DJ, editors. Ocular trauma principles and practice. New York: Thieme; 2002. p. 169–79.

    Google Scholar 

  • McCulley JP. Chemical injuries. In: Smolin G, Thoft RA, editors. The cornea: scientific foundation and clinical practice. Little, Brown & Co: Boston; 1987. p. 527–42.

    Google Scholar 

  • Merle H, Gerard M, Schrage N. Ocular burns. J Fr Ophtalmol. 2008;31:723–34.

    Article  CAS  PubMed  Google Scholar 

  • Mester V, Kuhn F. Lens. In: Kuhn F, Pieramici DJ, editors. Ocular trauma, principles and practice. New York: Thieme; 2002. p. 180–96.

    Google Scholar 

  • Mutlu FM, Duman H, Cil Y. Early-onset unilateral electric cataract: a rare clinical entity. J Burn Care Rehabil. 2004;25(4):363–5.

    Article  PubMed  Google Scholar 

  • Pasternak J. Trauma of the crystalline lens. In: Thach AB, editor. Ophthalmic care of the combat casualty. Washington, DC: Storming Media; 2003. p. 171–84.

    Google Scholar 

  • Paterson CA, Pfister RR. Intraocular pressure changes after alkali burns. Arch Ophthalmol. 1974;91:211–8.

    Article  CAS  PubMed  Google Scholar 

  • Schrage N, Kuhn F. Chemical injuries. In: Kuhn F, editor. Ocular traumatology. New York: Springer; 2008. p. 487–500.

    Chapter  Google Scholar 

  • Stein MR, Naidoff MA, Dawson CR. Intraocular pressure response to experimental alkali burns. Am J Ophthalmol. 1973;75:99–109.

    Article  CAS  PubMed  Google Scholar 

  • Trudo Jr EW, Rimm W. Chemical injuries of the eye. In: Thach AB, editor. Ophthalmic care of the combat casualty. Washington DC: Storming Media; 2003. p. 115–35.

    Google Scholar 

  • Wagoner MD, Kenyon KR, Gipson IK. Polymorphonuclear neutrophils delay corneal epithelial wound healing in vitro. Invest Ophthalmol Vis Sci. 1984;25:1217–20.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atilla Bayer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Acar, U., Bayer, A. (2016). Current Concepts and Management of Severely Traumatized Tissues in the Inner Coatings (the Anterior Segment: Anterior Chamber Structures, the Iris, and the Lens) of the Globe: Non-mechanical Injuries. In: Sobacı, G. (eds) Current Concepts and Management of Eye Injuries. Springer, London. https://doi.org/10.1007/978-1-4471-7302-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-7302-1_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-7300-7

  • Online ISBN: 978-1-4471-7302-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics