Advertisement

Hilbert Spaces

  • Vilmos Komornik
Chapter
Part of the Universitext book series (UTX)

Abstract

Stimulated by Fredholm’s discovery of an unexpectedly simple and general theory of integral equations in 1900, Hilbert developed a general theory of infinite-dimensional inner product spaces between 1904 and 1906. This allowed him to solve several important problems of mathematical physics. His student Schmidt replaced his algebraic formulation by a more intuitive geometric language, making the theory accessible to a wider public.

Keywords

Hilbert Space Scalar Product Weak Convergence Compact Operator Schwarz Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    N.I. Achieser, Theory of Approximation (Dover, New York, 1992)MATHGoogle Scholar
  2. 2.
    N.I. Akhieser, I.M. Glazman, Theory of Linear Operators in Hilbert Space I-II (Dover, New York, 1993)Google Scholar
  3. 3.
    L. Alaoglu, Weak topologies of normed linear spaces, Ann. Math. (2) 41, 252–267 (1940)Google Scholar
  4. 4.
    P.S. Alexandroff, Einführung in die Mengenlehre und in die allgemeine Topologie (German) [Introduction to Set Theory and to General Topology]. Translated from the Russian by Manfred Peschel, Wolfgang Richter and Horst Antelmann. Hochschulbücher für Mathematik. University Books for Mathematics, vol. 85 (VEB Deutscher Verlag der Wissenschaften, Berlin, 1984), 336 ppGoogle Scholar
  5. 5.
    F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and its Applications (De Gruyter, Berlin, 1994)MATHCrossRefGoogle Scholar
  6. 6.
    Archimedes, Quadrature of the parabola; [199], 235–252Google Scholar
  7. 7.
    C. Arzelà, Sulla integrazione per serie. Rend. Accad. Lincei Roma 1, 532–537, 566–569 (1885)MATHGoogle Scholar
  8. 8.
    C. Arzelà, Funzioni di linee. Atti Accad. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (4) 5I, 342–348 (1889)Google Scholar
  9. 9.
    C. Arzelà, Sulle funzioni di linee. Mem. Accad. Sci. Ist. Bologna Cl. Sci. Fis. Mat. (5) 5, 55–74 (1895)Google Scholar
  10. 10.
    C. Arzelà, Sulle serie di funzioni. Memorie Accad. Sci. Bologna 8, 131–186 (1900), 701–744Google Scholar
  11. 11.
    G. Ascoli, Sul concetto di integrale definite. Atti Acc. Lincei (2) 2, 862–872 (1875)Google Scholar
  12. 12.
    G. Ascoli, Le curve limiti di una varietà data di curve. Mem. Accad. dei Lincei (3) 18, 521–586 (1883)Google Scholar
  13. 13.
    G. Ascoli, Sugli spazi lineari metrici e le loro varietà lineari. Ann. Mat. Pura Appl. (4) 10, 33–81, 203–232 (1932)Google Scholar
  14. 14.
    D. Austin, A geometric proof of the Lebesgue differentiation theorem. Proc. Am. Math. Soc. 16, 220–221 (1965)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    V. Avanissian, Initiation à l’analyse fonctionnelle (Presses Universitaires de France, Paris, 1996)MATHGoogle Scholar
  16. 16.
    R. Baire, Sur les fonctions discontinues qui se rattachent aux fonctions continues. C. R. Acad. Sci. Paris 126, 1621–1623 (1898). See in [18]Google Scholar
  17. 17.
    R. Baire, Sur les fonctions à variables réelles. Ann. di Mat. (3) 3, 1–123 (1899). See in [18]Google Scholar
  18. 18.
    R. Baire, Oeuvres Scientifiques, (Gauthier-Villars, Paris, 1990)MATHGoogle Scholar
  19. 19.
    S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales. Fund. Math. 3, 133–181 (1922); [26] II, 305–348Google Scholar
  20. 20.
    S. Banach, An example of an orthogonal development whose sum is everywhere different from the developed function. Proc. Lond. Math. Soc. (2) 21, 95–97 (1923)Google Scholar
  21. 21.
    S. Banach, Sur le problème de la mesure. Fund. Math. 4, 7–33 (1923)MATHGoogle Scholar
  22. 22.
    S. Banach, Sur les fonctionnelles linéaires I-II. Stud. Math. 1, 211–216, 223–239 (1929); [26] II, 375–395Google Scholar
  23. 23.
    S. Banach, Théorèmes sur les ensembles de première catégorie. Fund. Math. 16, 395–398 (1930); [26] I, 204–206Google Scholar
  24. 24.
    S. Banach, Théorie des opérations linéaires (Monografje Matematyczne, Warszawa, 1932); [26] II, 13–219Google Scholar
  25. 25.
    S. Banach, The Lebesgue Integral in Abstract Spaces; Jegyzet a [409] könyvben (1937)Google Scholar
  26. 26.
    S. Banach, Oeuvres I-II (Państwowe Wydawnictwo Naukowe, Warszawa, 1967, 1979)Google Scholar
  27. 27.
    S. Banach, S. Mazur, Zur Theorie der linearen Dimension. Stud. Math. 4, 100–112 (1933); [26] II, 420–430Google Scholar
  28. 28.
    S. Banach, H. Steinhaus, Sur le principe de la condensation de singularités. Fund. Math. 9, 50–61 (1927); [26] II, 365–374Google Scholar
  29. 29.
    S. Banach, A. Tarski, Sur la décomposition des ensembles de points en parties respectivement congruentes. Fund. Math. 6, 244–277 (1924)MATHGoogle Scholar
  30. 30.
    R.G. Bartle, A Modern Theory of Integration. Graduate Studies in Mathematics, vol. 32 (American Mathematical Society, Providence, RI, 2001)Google Scholar
  31. 31.
    W.R. Bauer, R.H. Brenner, The non-existence of a banach space of countably infinite hamel dimension. Am. Math. Mon. 78, 895–896 (1971)MathSciNetMATHCrossRefGoogle Scholar
  32. 32.
    B. Beauzamy, Introduction to Banach Spaces and Their Geometry (North-Holland, Amsterdam, 1985)MATHGoogle Scholar
  33. 33.
    P.R. Beesack, E. Hughes, M. Ortel, Rotund complex normed linear spaces. Proc. Am. Math. Soc. 75 (1), 42–44 (1979)MathSciNetMATHCrossRefGoogle Scholar
  34. 34.
    S.K. Berberian, Notes on Spectral Theory (Van Nostrand, Princeton, NJ, 1966)MATHGoogle Scholar
  35. 35.
    S.K. Berberian, Introduction to Hilbert Space (Chelsea, New York, 1976)MATHGoogle Scholar
  36. 36.
    S.J. Bernau, F. Smithies, A note on normal operators. Proc. Camb. Philos. Soc. 59, 727–729 (1963)MathSciNetMATHCrossRefGoogle Scholar
  37. 37.
    M. Bernkopf, The development of functions spaces with particular reference to their origins in integral equation theory. Arch. Hist. Exact Sci. 3, 1–66 (1966)MathSciNetMATHCrossRefGoogle Scholar
  38. 38.
    D. Bernoulli, Réflexions et éclaircissements sur les nouvelles vibrations des cordes. Hist. Mém Acad. R. Sci. Lett. Berlin 9, 147–172 (1753) (published in 1755)Google Scholar
  39. 39.
    S.N. Bernstein, Démonstration du théorème de Weierstrass fondée sur le calcul de probabilités. Commun. Kharkov Math. Soc. 13, 1–2 (1912)MATHGoogle Scholar
  40. 40.
    C. Bessaga, A. Pelczýnski, Selected Topics in Infinite-Dimensional Topology. Monografje Matematyczne, Tome 58 (Państwowe Wydawnictwo Naukowe, Warszawa, 1975)Google Scholar
  41. 41.
    F.W. Bessel, Über das Dollond’sche Mittagsfernrohr etc. Astronomische Beobachtungen etc. Bd. 1, Königsberg 1815, [43] II, 24–25Google Scholar
  42. 42.
    F.W. Bessel, Über die Bestimmung des Gesetzes einer priosischen Erscheinung, Astron. Nachr. Bd. 6, Altona 1828, 333–348, [43] II, 364–368Google Scholar
  43. 43.
    F.W. Bessel, Abhandlungen von Friedrich Wilhelm Bessel I-III, ed. by R. Engelman (Engelmann, Leipzig, 1875–1876)Google Scholar
  44. 44.
    P. Billingsley, Van der Waerden’s continuous nowhere differentiable function. Am. Math. Mon. 89, 691 (1982)MathSciNetMATHCrossRefGoogle Scholar
  45. 45.
    G. Birkhoff, E. Kreyszig, The establishment of functional analysis. Hist. Math. 11, 258–321 (1984)MathSciNetMATHCrossRefGoogle Scholar
  46. 46.
    S. Bochner, Integration von Funktionen, deren Wert die Elemente eines Vektorraumes sind. Fund. Math. 20, 262–276 (1933)MATHGoogle Scholar
  47. 47.
    H. Bohman, On approximation of continuous and analytic functions. Ark. Mat 2, 43–56 (1952)MathSciNetMATHCrossRefGoogle Scholar
  48. 48.
    H.F. Bohnenblust, A. Sobczyk, Extensions of functionals on complex linear spaces. Bull. Am. Math. Soc. 44, 91–93 (1938)MathSciNetMATHCrossRefGoogle Scholar
  49. 49.
    P. du Bois-Reymond, Ueber die Fourier’schen Reihen. Nachr. K. Ges. Wiss. Göttingen 21, 571–582 (1873)Google Scholar
  50. 50.
    P. du Bois Reymond, Versuch einer Classification der willkürlichen Functionen reeller Argumente nach ihren Aenderungen in den kleinsten Intervallen [German]. J. Reine Angew. Math. 79, 21–37 (1875)MathSciNetGoogle Scholar
  51. 51.
    P. du Bois-Reymond, Untersuchungen über die Convergenz und Divergenz der Fourierschen Darstellungsformeln (mit drei lithografierten Tafeln). Abh. Math. Phys. KI. Bayer. Akad. Wiss. 12, 1–103 (1876)Google Scholar
  52. 52.
    P. du Bois-Reymond, Die allgemeine Funktionentheorie (Laapp, Tübingen, 1882); French translation: Théorie générale des fonctions, Nice, 1887Google Scholar
  53. 53.
    P. du Bois-Reymond, Ueber das Doppelintegral. J. Math. Pures Appl. 94, 273–290 (1883)MathSciNetMATHGoogle Scholar
  54. 54.
    B. Bolzano, Rein analytischer Beweis des Lehrsatzes, dass zwischen je zwei Werthen, die ein entgegengesetztes Resultat gewähren, wenigstens eine reelle Wurzel der Gleichung liege (Prag, Haase, 1817). New edition: Ostwald’s Klassiker der exakten Wissenschaften, No. 153, Leipzig, 1905. English translation: Purely analytic proof of the theorem the between any two values which give results of opposite sign there lies at least one real root of the equation. Historia Math. 7, 156–185 (1980); See also in [57].Google Scholar
  55. 55.
    B. Bolzano, Functionenlehre, around 1832. Partially published in Königliche böhmische Gesellschaft der Wissenschaften, Prága, 1930; complete publication in [56] 2A10/1, 2000, 23–165; English translation: [57], 429–572.Google Scholar
  56. 56.
    B. Bolzano, Bernard Bolzano Gesamtausgabe (Frommann–Holzboog, Stuttgart, 1969)MATHGoogle Scholar
  57. 57.
    B. Bolzano, The Mathematical Works of Bernard Bolzano, translated by S. Russ, (Oxford University Press, Oxford, 2004)Google Scholar
  58. 58.
    E. Borel, Sur quelques points de la théorie des fonctions. Ann. Éc. Norm. Sup. (3) 12, 9–55 (1895); [62] I, 239–285Google Scholar
  59. 59.
    E. Borel, Leçons sur la théorie des fonctions (Gauthier-Villars, Paris, 1898)Google Scholar
  60. 60.
    E. Borel, Leçons sur les fonctions de variables réelles (Gauthier-Villars, Paris, 1905)MATHGoogle Scholar
  61. 61.
    E. Borel (ed.), L. Zoretti, P. Montel, M. Fréchet, Recherches contemporaines sur la théorie des fonctions: Les ensembles de points, Intégration et dérivation, Développements en séries. Encyclopédie des sciences mathématiques, II-2 (Gauthier-Villars/Teubner, Paris/Leipzig, 1912) German translation and adaptation by A. Rosenthal: Neuere Untersuchungen über Funktionen reeller Veränderlichen: Die Punktmengen, Integration und Differentiation, Funktionenfolgen, Encyklopädie der mathematischen Wissenschaften, II-9 (Teubner, Leipzig, 1924)Google Scholar
  62. 62.
    E. Borel, Oeuvres I-IV (CNRS, Paris, 1972)Google Scholar
  63. 63.
    M.W. Botsko, An elementary proof of Lebesgue’s differentiation theorem. Am. Math. Mon. 110, 834–838 (2003)MathSciNetMATHCrossRefGoogle Scholar
  64. 64.
    N. Bourbaki, Sur les espaces de Banach. C. R. Acad. Sci. Paris 206, 1701–1704 (1938)MATHGoogle Scholar
  65. 65.
    H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations (Springer, New York, 2010)CrossRefGoogle Scholar
  66. 66.
    H. Brunn, Zur Theorie der Eigebiete. Arch. Math. Phys. (3) 17, 289–300 (1910)Google Scholar
  67. 67.
    J.R. Buddenhagen, Subsets of a countable set. Am. Math. Mon. 78, 536–537 (1971)MathSciNetCrossRefGoogle Scholar
  68. 68.
    J.C. Burkill, The Lebesgue Integral (Cambridge University Press, Cambridge, 1951)MATHCrossRefGoogle Scholar
  69. 69.
    G. Cantor, Ueber trigonometrische Reihen. Math. Ann. 4, 139–143 (1871); [76], 87–91Google Scholar
  70. 70.
    G. Cantor, Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine Angew. Math. 77, 258–262 (1874); [76], 115–118Google Scholar
  71. 71.
    G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten III. Math. Ann. 20, 113–121 (1882); [76], 149–157Google Scholar
  72. 72.
    G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten V. Math. Ann. 21, 545–586 (1883); [76], 165–208Google Scholar
  73. 73.
    G. Cantor, De la puissance des ensembles parfaits de points. Acta Math. 4, 381–392 (1884)MathSciNetCrossRefGoogle Scholar
  74. 74.
    G. Cantor, Über unendliche, lineare Punktmannigfaltigkeiten VI. Math. Ann. 23, 451–488 (1884); [76], 210–244Google Scholar
  75. 75.
    G. Cantor, Über eine Frage der Mannigfaltigkeitslehre. Jahresber. Deutsch. Math. Verein. 1, 75–78 (1890–1891); [76], 278–280Google Scholar
  76. 76.
    G. Cantor, Gesammelte Abhandlungen (Springer, Berlin, 1932)MATHCrossRefGoogle Scholar
  77. 77.
    C. Carathéodory, Constantin Vorlesungen über reelle Funktionen [German], 3rd edn. (Chelsea, New York, 1968), x+718 pp. [1st edn. (Teubner, Leipzig, 1918); 2nd edn. (1927); reprinting (Chelsea, New York, 1948)]Google Scholar
  78. 78.
    L. Carleson, On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)MathSciNetMATHCrossRefGoogle Scholar
  79. 79.
    A.L. Cauchy, Cours d’analyse algébrique (Debure, Paris, 1821); [82] (2) III, 1–476Google Scholar
  80. 80.
    L.-A. Cauchy, Résumé des leçons données à l’École Polytechnique sur le calcul infinitésimal. Calcul intégral (1823); [82] (2) IV, 122–261Google Scholar
  81. 81.
    L.-A. Cauchy, Mémoire sur les intégrales définies. Mém. Acad. Sci. Paris 1 (1827); [82] (1) I, 319–506Google Scholar
  82. 82.
    A.L. Cauchy, Oeuvres, 2 sorozat, 22 kötet (Gauthier-Villars, Paris, 1882–1905)Google Scholar
  83. 83.
    P.L. Chebyshev [Tchebychef], Sur les questions de minima qui se rattachent à la représentation approximative des fonctions. Mém. Acad. Imp. Sci. St. Pétersb. (6) Sciences math. et phys. 7, 199–291 (1859); [84] I, 273–378Google Scholar
  84. 84.
    P.L. Chebyshev [Tchebychef], Oeuvres I-II (Chelsea, New York, 1962)Google Scholar
  85. 85.
    E.W. Cheney, Introduction to Approximation Theory (Chelsea, New York, 1982)MATHGoogle Scholar
  86. 86.
    P.R. Chernoff, Pointwise convergence of Fourier series. Am. Math. Monthly 87, 399–400 (1980)MathSciNetMATHCrossRefGoogle Scholar
  87. 87.
    P.G. Ciarlet, Linear and Nonlinear Functional Analysis with Applications (SIAM, Philadelphia, 2013)MATHGoogle Scholar
  88. 88.
    A.C. Clairaut, Mémoire sur l’orbite apparente du soleil autour de la Terre, en ayant égard aux perturbations produites par des actions de la Lune et des Planètes principales. Hist. Acad. Sci. Paris, 52–564 (1754, appeared in 1759)Google Scholar
  89. 89.
    J.A. Clarkson, Uniformly convex spaces. Trans. Am. Math. Soc. 40, 396–414 (1936)MathSciNetMATHCrossRefGoogle Scholar
  90. 90.
    J.A. Clarkson, P. Erdős, Approximation by polynomials. Duke Math. J. 10, 5–11 (1943)MathSciNetMATHCrossRefGoogle Scholar
  91. 91.
    R. Courant, D. Hilbert, Methoden de matematischen Physik I (Springer, Berlin, 1931)MATHCrossRefGoogle Scholar
  92. 92.
    Á. Császár, Valós analízis I–II [Real Analysis I–II] (Tankönyvkiadó, Budapest, 1983)Google Scholar
  93. 93.
    P. Daniell, A general form of integral. Ann. Math. 19, 279–294 (1917/18)Google Scholar
  94. 94.
    G. Dantzig, Linear Programming and Extensions (Princeton University Press/RAND Corporation, Princeton/Santa Monica, 1963)MATHGoogle Scholar
  95. 95.
    G. Darboux, Mémoire sur les fonctions discontinues. Ann. Éc. Norm. Sup. Paris (2) 4, 57–112 (1875)Google Scholar
  96. 96.
    M.M. Day, The spaces L p with 0 < p < 1. Bull. Am. Math. Soc. 46, 816–823 (1940)MATHCrossRefGoogle Scholar
  97. 97.
    M.M. Day, Normed Linear Spaces (Springer, Berlin, 1962)MATHCrossRefGoogle Scholar
  98. 98.
    A. Denjoy, Calcul de la primitive de la fonction dérivée la plus générale. C. R. Acad. Sci. Paris 154, 1075–1078 (1912)MATHGoogle Scholar
  99. 99.
    A. Denjoy, Une extension de l’intégrale de M. Lebesgue. C. R. Acad. Sci. Paris 154, 859–862 (1912)MATHGoogle Scholar
  100. 100.
    A. Denjoy, Mémoire sur la totalisation des nombres dérivées non sommables. Ann. Éc. Norm. Sup. Paris (3) 33, 127–222 (1916)Google Scholar
  101. 101.
    M. de Vries, V. Komornik, Unique expansions of real numbers. Adv. Math. 221, 390–427 (2009)MathSciNetMATHCrossRefGoogle Scholar
  102. 102.
    M. de Vries, V. Komornik, P. Loreti, Topology of univoque bases. Topol. Appl. (2016). doi:10.1016/j.topol.2016.01.023,MATHGoogle Scholar
  103. 103.
    J. Diestel, Geometry of Banach Spaces. Selected Topics (Springer, New York, 1975)Google Scholar
  104. 104.
    J. Diestel, Sequences and Series in Banach Spaces (Springer, New York, 1984)MATHCrossRefGoogle Scholar
  105. 105.
    J. Dieudonné, Sur le théorème de Hahn–Banach. Revue Sci. 79, 642–643 (1941)MathSciNetMATHGoogle Scholar
  106. 106.
    J. Dieudonné, History of Functional Analysis (North-Holland, Amsterdam, 1981)MATHGoogle Scholar
  107. 107.
    U. Dini, Sopra la serie di Fourier (Nistri, Pisa, 1872)Google Scholar
  108. 108.
    U. Dini, Sulle funzioni finite continue de variabili reali che non hanno mai derivata. Atti R. Acc. Lincei, (3), 1, 130–133 (1877); [111] II, 8–11Google Scholar
  109. 109.
    U. Dini, Fondamenti per la teoria delle funzioni di variabili reali (Nistri, Pisa, 1878)Google Scholar
  110. 110.
    U. Dini, Serie di Fourier e altre rappresentazioni analitiche delle funzioni di una variabile reale (Nistri, Pisa, 1880); [111] IV, 1–272Google Scholar
  111. 111.
    U. Dini, Opere I-V (Edizioni Cremonese, Roma, 1953–1959)Google Scholar
  112. 112.
    G.L. Dirichlet, Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données. J. Reine Angew. Math. 4, 157–169 (1829); [114] I, 117–132Google Scholar
  113. 113.
    G.L. Dirichlet, Über eine neue Methode zur Bestimmung vielfacher Integrale. Ber. Verh. K. Preuss. Acad. Wiss. Berlin, 18–25 (1839); [114] I, 381–390Google Scholar
  114. 114.
    G.L. Dirichlet, Werke I-II (Reimer, Berlin, 1889–1897)Google Scholar
  115. 115.
    J.L. Doob, The Development of Rigor in Mathematical Probability (1900–1950), [361], 157–169Google Scholar
  116. 116.
    N. Dunford, Uniformity in linear spaces. Trans. Am. Math. Soc. 44, 305–356 (1938)MathSciNetMATHCrossRefGoogle Scholar
  117. 117.
    N. Dunford, J.T. Schwartz, Linear Operators I-III (Wiley, New York, 1957–1971)Google Scholar
  118. 118.
    W.F. Eberlein, Weak compactness in Banach spaces I. Proc. Natl. Acad. Sci. USA 33, 51–53 (1947)MathSciNetMATHCrossRefGoogle Scholar
  119. 119.
    R.E. Edwards, Functional Analysis. Theory and Applications (Holt, Rinehart and Winston, New York, 1965)Google Scholar
  120. 120.
    R.E. Edwards, Fourier Series. A Modern Introduction I-II (Springer, New York, 1979–1982)Google Scholar
  121. 121.
    D.Th. Egoroff, Sur les suites de fonctions mesurables. C. R. Acad. Sci. Paris 152, 244–246 (1911)MATHGoogle Scholar
  122. 122.
    M. Eidelheit, Zur Theorie der konvexen Mengen in linearen normierten Räumen. Stud. Math. 6, 104–111 (1936)MATHGoogle Scholar
  123. 123.
    H.W. Ellis, D.O. Snow, On (L 1) for general measure spaces, Can. Math. Bull. 6, 211–229 (1963)MathSciNetMATHCrossRefGoogle Scholar
  124. 124.
    P. Erdős, P. Turán, On interpolation I. Quadrature- and mean-convergence in the Lagrange interpolation. Ann. Math. 38, 142–155 (1937); [126] I, 50–51, 97–98, 54–63Google Scholar
  125. 125.
    P. Erdős, P. Vértesi, On the almost everywhere divergence of Lagrange interpolatory polynomials for arbitrary system of nodes. Acta Math. Acad. Sci. Hungar. 36, 71–89 (1980), 38, 263 (1981)Google Scholar
  126. 126.
    P. Erdős (ed.), Collected Papers of Paul Turán I-III (Akadémiai Kiadó, Budapest, 1990)Google Scholar
  127. 127.
    P. Erdős, I. Joó, V. Komornik, Characterization of the unique expansions \(1 =\sum q^{-n_{i}}\) and related problems. Bull. Soc. Math. France 118, 377–390 (1990)MathSciNetMATHGoogle Scholar
  128. 128.
    L. Euler, De summis serierum reciprocarum. Comm. Acad. Sci. Petrop. 7, 123–134 (1734/1735, appeared in 1740); [132] (1) 14, 73–86Google Scholar
  129. 129.
    L. Euler, Introductio in analysin infinitorum I (M.-M. Bousquet, Lausanne, 1748); [132] (1) 8Google Scholar
  130. 130.
    L. Euler, De formulis integralibus duplicatis. Novi Comm. Acad. Sci. Petrop. 14 (1769): I, 1770, 72–103; [132] (1) 17, 289–315Google Scholar
  131. 131.
    L. Euler, Disquisitio ulterior super seriebus secundum multipla cuius dam anguli progredientibus. Nova Acta Acad. Sci. Petrop. 11, 114–132 (1793, written in 1777, appeared in 1798); [132] (1) 16, Part 1, 333–355Google Scholar
  132. 132.
    L. Euler, Opera Omnia, 4 series, 73 volumes (Teubner/Füssli, Leipzig/Zürich, 1911)MATHGoogle Scholar
  133. 133.
    G. Faber, Über die interpolatorische Darstellung stetiger Funtionen. Jahresber. Deutsch. Math. Verein. 23, 192–210 (1914)MATHGoogle Scholar
  134. 134.
    K. Falconer, Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. (Wiley, Chicester, 2003)Google Scholar
  135. 135.
    J. Farkas, Über die Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)MathSciNetMATHGoogle Scholar
  136. 136.
    P. Fatou, Séries trigonométriques et séries de Taylor. Acta Math. 30, 335–400 (1906)MathSciNetMATHCrossRefGoogle Scholar
  137. 137.
    L. Fejér, Sur les fonctions bornées et intégrables. C. R. Acad. Sci. Paris 131, 984–987 (1900); [143] I, 37–41Google Scholar
  138. 138.
    L. Fejér, Untersuchungen über Fouriersche Reihen. Math. Ann. 58, 51–69 (1904); [143] I, 142–160Google Scholar
  139. 139.
    L. Fejér, Eine stetige Funktion deren Fourier’sche Reihe divergiert. Rend. Circ. Mat. Palermo 28, 1, 402–404 (1909); [143] I, 541–543Google Scholar
  140. 140.
    L. Fejér, Beispiele stetiger Funktionen mit divergenter Fourierreihe. J. Reine Angew. Math. 137, 1–5 (1910); [143] I, 538–541Google Scholar
  141. 141.
    L. Fejér, Lebesguesche Konstanten und divergente Fourierreihen. J. Reine Angew. Math. 138, 22–53 (1910); [143] I, 543–572Google Scholar
  142. 142.
    L. Fejér, Über Interpolation. Götting. Nachr. 66–91 (1916); [143] II, 25–48Google Scholar
  143. 143.
    L. Fejér, Leopold Fejér. Gesammelte Arbeiten I-II, ed. by Turán Pál (Akadémiai Kiadó, Budapest, 1970)Google Scholar
  144. 144.
    G. Fichera, Vito Volterra and the birth of functional analysis, [361], 171–183Google Scholar
  145. 145.
    G.M. Fichtenholz, L.V. Kantorovich [Kantorovitch], Sur les opérations linéaires dans l’espace des fonctions bornées. Stud. Math. 5, 69–98 (1934)Google Scholar
  146. 146.
    E. Fischer, Sur la convergence en moyenne. C. R. Acad. Sci. Paris 144, 1022–1024, 1148–1150 (1907)MATHGoogle Scholar
  147. 147.
    S.R. Foguel, On a theorem by A.E. Taylor. Proc. Am. Math. Soc. 9, 325 (1958)Google Scholar
  148. 148.
    J.B.J. Fourier, Théorie analytique de la chaleur (Didot, Paris 1822); [149] IGoogle Scholar
  149. 149.
    J.B.J. Fourier Oeuvres de Fourier I-II (Gauthier-Villars, Paris, 1888–1890)Google Scholar
  150. 150.
    I. Fredholm, Sur une nouvelle méthode pour la résolution du problème de Dirichlet. Kong. Vetenskaps-Akademiens Förh. Stockholm, 39–46 (1900); [152], 61–68Google Scholar
  151. 151.
    I. Fredholm, Sur une classe d’équations fonctionnelles. Acta Math. 27, 365–390 (1903); [152], 81–106Google Scholar
  152. 152.
    I. Fredholm, Oeuvres complètes de Ivar Fredholm (Litos Reprotryck, Malmo, 1955)MATHGoogle Scholar
  153. 153.
    G. Freud, Über positive lineare Approximationsfolgen von stetigen reellen Funktionen auf kompakten Mengen. On Approximation Theory, Proceedings of the Conference in Oberwolfach, 1963 (Birkhäuser, Basel, 1964), pp. 233–238Google Scholar
  154. 154.
    M. Fréchet, Sur quelques points du calcul fonctionnel. Rend. Circ. Mat. Palermo 22, 1–74 (1906)MATHCrossRefGoogle Scholar
  155. 155.
    M. Fréchet, Sur les ensembles de fonctions et les opérations linéaires. C. R. Acad. Sci. Paris 144, 1414–1416 (1907)MATHGoogle Scholar
  156. 156.
    M. Fréchet, Sur les opérations linéaires III. Trans. Am. Math. Soc. 8, 433–446 (1907)MATHCrossRefGoogle Scholar
  157. 157.
    M. Fréchet, Les dimensions d’un ensemble abstrait. Math. Ann. 68, 145–168 (1910)MathSciNetMATHCrossRefGoogle Scholar
  158. 158.
    M. Fréchet, Sur l’intégrale d’une fonctionnelle étendue à un ensemble abstrait. Bull. Soc. Math. France 43, 248–265 (1915)MathSciNetMATHGoogle Scholar
  159. 159.
    M. Fréchet, L’écart de deux fonctions quelconques. C. R. Acad. Sci. Paris 162, 154–155 (1916)Google Scholar
  160. 160.
    M. Fréchet, Sur divers modes de convergence d’une suite de fonctions d’une variable réelle. Bull. Calcutta Math. Soc. 11, 187–206 (1919–1920)Google Scholar
  161. 161.
    M. Fréchet, Les espaces abstraits (Gauthier-Villars, Paris, 1928)MATHGoogle Scholar
  162. 162.
    G. Frobenius, Über lineare Substitutionen und bilineare Formen. J. Reine Angew. Math. 84, 1–63 (1878); [163] I, 343–405Google Scholar
  163. 163.
    G. Frobenius, Gesammelte Abhandlungen I-III (Springer, Berlin, 1968)CrossRefGoogle Scholar
  164. 164.
    G. Fubini, Sugli integrali multipli. Rend. Accad. Lincei Roma 16, 608–614 (1907)MATHGoogle Scholar
  165. 165.
    G. Fubini, Sulla derivazione per serie. Rend. Accad. Lincei Roma 24, 204–206 (1915)MATHGoogle Scholar
  166. 166.
    I.S. Gál, On sequences of operations in complete vector spaces. Am. Math. Mon. 60, 527–538 (1953)MathSciNetMATHCrossRefGoogle Scholar
  167. 167.
    B.R. Gelbaum, J.M.H. Olmsted, Counterexamples in Mathematics (Holden-Day, San Francisco, 1964)MATHGoogle Scholar
  168. 168.
    B.R. Gelbaum, J.M.H. Olmsted, Theorems and Counterexamples in Mathematics (Springer, New York, 1990)MATHCrossRefGoogle Scholar
  169. 169.
    L. Gillman, M. Jerison, Rings of Continuous Functions (D. Van Nostrand Company, Princeton, 1960)MATHCrossRefGoogle Scholar
  170. 170.
    I.M. Glazman, Ju.I. Ljubic, Finite-Dimensional Linear Analysis: A Systematic Presentation in Problem Form (Dover, New York, 2006)MATHGoogle Scholar
  171. 171.
    H.H. Goldstine, Weakly complete Banach spaces. Duke Math. J. 4, 125–131 (1938)MathSciNetMATHCrossRefGoogle Scholar
  172. 172.
    D.B. Goodner, Projections in normed linear spaces. Trans. Am. Math. Soc. 69, 89–108 (1950)MathSciNetMATHCrossRefGoogle Scholar
  173. 173.
    J.P. Gram, Om Rackkendvilklinger bestemte ved Hjaelp af de mindste Kvadraters Methode, Copenhagen, 1879. German translation: Ueber die Entwicklung reeller Funktionen in Reihen mittelst der Methode der kleinsten Quadrate, J. Reine Angew. Math. 94, 41–73 (1883)MathSciNetGoogle Scholar
  174. 174.
    A. Grothendieck, Sur la complétion du dual d’un espace vectoriel localement convexe. C. R. Acad. Sci. Paris 230, 605–606 (1950)MathSciNetMATHGoogle Scholar
  175. 175.
    B.L. Gurevich, G.E. Shilov, Integral, Measure and Derivative: A Unified Approach (Prentice-Hall, Englewood Cliffs, NJ, 1966)MATHGoogle Scholar
  176. 176.
    A. Haar, Zur Theorie der orthogonalen Funktionensysteme. Math. Ann. 69, 331–371 (1910); [179], 47–87Google Scholar
  177. 177.
    A. Haar, Reihenentwicklungen nach Legendreschen Polynomen. Math. Ann. 78, 121–136 (1918); [179], 124–139Google Scholar
  178. 178.
    A. Haar, A folytonos csoportok elméletéről. Magyar Tud. Akad. Mat. és Természettud. Ért. 49, 287–306 (1932); [182], 579–599; German translation: Die Maßbegriffe in der Theorie der kontinuierlichen Gruppen, Ann. Math. 34, 147–169 (1933); [182], 600–622Google Scholar
  179. 179.
    A. Haar, Gesammelte Arbeiten, ed. by B. Sz.-Nagy (Akadémiai Kiadó, Budapest, 1959)Google Scholar
  180. 180.
    H. Hahn, Theorie der reellen Funktionen I (Springer, Berlin, 1921)MATHCrossRefGoogle Scholar
  181. 181.
    P. Hahn, Über Folgen linearer Operationen. Monatsh. Math. Physik 32, 3–88 (1922); [183] I, 173–258Google Scholar
  182. 182.
    P. Hahn, Über linearer Gleichungssysteme in linearer Räumen. J. Reine Angew. Math. 157, 214–229 (1927); [183] I, 259–274Google Scholar
  183. 183.
    P. Hahn, Gesammelte Abhandlungen I-III (Springer, New York, 1995–1997)Google Scholar
  184. 184.
    P.R. Halmos, Measure Theory (D. Van Nostrand Co., Princeton, NJ, 1950)MATHCrossRefGoogle Scholar
  185. 185.
    P.R. Halmos, Introduction to Hilbert Space and the Theory of Spectral Multiplicity (Chelsea, New York, 1957)MATHGoogle Scholar
  186. 186.
    P.R. Halmos, L Naive Set Theory (Van Nostrand, Princeton, NJ, 1960)MATHGoogle Scholar
  187. 187.
    P.R. Halmos, A Hilbert Space Problem Book (Springer, Berlin, 1974)MATHCrossRefGoogle Scholar
  188. 188.
    G. Halphén, Sur la série de Fourier. C. R. Acad. Sci. Paris 95, 1217–1219 (1882)MATHGoogle Scholar
  189. 189.
    H. Hanche-Olsen, H. Holden, The Kolmogorov-Riesz compactness theorem. Expo. Math. 28, 385–394 (2010)MathSciNetMATHCrossRefGoogle Scholar
  190. 190.
    H. Hankel, Untersuchungen über die unendlich oft oszillierenden und unstetigen Funktionen. Math. Ann. 20, 63–112 (1882)MathSciNetCrossRefGoogle Scholar
  191. 191.
    G. Hardy, J.E. Littlewood, G. Pólya, Inequalities, 2nd edn. (Cambridge University Press, Cambridge, 1952)MATHGoogle Scholar
  192. 192.
    A. Harnack, Die Elemente der Differential- und Integralrechnung (Teubner, Lepizig, 1881)MATHGoogle Scholar
  193. 193.
    A. Harnack, Die allgemeinen Sätze über den Zusammenhang der Functionen einer reellen Variabelen mit ihren Ableitungen II. Math. Ann. 24, 217–252 (1884)MathSciNetCrossRefGoogle Scholar
  194. 194.
    A. Harnack, Ueber den Inhalt von Punktmengen. Math. Ann. 25, 241–250 (1885)MathSciNetCrossRefGoogle Scholar
  195. 195.
    F. Hausdorff, Grundzüge der Mengenlehre (Verlag von Veit, Leipzig, 1914); [197] IIGoogle Scholar
  196. 196.
    F. Hausdorff, Dimension und äusseres Mass. Math. Ann. 79, 1–2, 157–179 (1918); [197] IVGoogle Scholar
  197. 197.
    F. Hausdorff, Gesammelte Werke I-VIII (Springer, Berlin, 2000)Google Scholar
  198. 198.
    T. Hawkins, Lebesgue’s Theory of Integration. Its Origins and Development (AMS Chelsea Publishing, Providence, 2001)Google Scholar
  199. 199.
    T.L. Heath (ed.), The Works of Archimedes (Cambridge University Press, Cambridge, 1897)Google Scholar
  200. 200.
    E. Heine, Die Elemente der Funktionenlehre. J. Reine Angew. Math. 74, 172–188 (1872)MathSciNetCrossRefGoogle Scholar
  201. 201.
    E. Hellinger, O. Toeplitz, Grundlagen für eine Theorie der unendlichen Matrizen. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 351–355 (1906)Google Scholar
  202. 202.
    E. Hellinger, O. Toeplitz, Grundlagen für eine Theorie der unendlichen Matrizen. Math. Ann. 69, 289–330 (1910)MathSciNetMATHCrossRefGoogle Scholar
  203. 203.
    E. Hellinger, O. Toeplitz, Integralgleichungen une Gleichungen mit unendlichvielen Unbekannten. Encyklopädie der Mathematischen Wissenschaften, II C 13 (Teubner, Leipzig, 1927)Google Scholar
  204. 204.
    E. Helly, Über lineare Funktionaloperationen. Sitzber. Kais. Akad. Wiss. Math.-Naturwiss. Kl. Wien 121, 2, 265–297 (1912)MATHGoogle Scholar
  205. 205.
    R. Henstock, The efficiency of convergence factors for functions of a continuous real variable. J. Lond. Math. Soc. 30, 273–286 (1955)MathSciNetMATHCrossRefGoogle Scholar
  206. 206.
    R. Henstock, Definitions of Riemann type of the variational integrals. Proc. Lond. Math. Soc. (3) 11, 402–418 (1961)Google Scholar
  207. 207.
    E. Hewitt, K. Stromberg, Real and Abstract Analysis (Springer, Berlin, 1965)MATHCrossRefGoogle Scholar
  208. 208.
    D. Hilbert, Grundzüge einer allgemeinen Theorie der Integralgleichungen I. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 49–91 (1904)Google Scholar
  209. 209.
    D. Hilbert, Grundzüge einer allgemeinen Theorie der Integralgleichungen IV. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl., 157–227 (1906)Google Scholar
  210. 210.
    T.H. Hildebrandt, Necessary and sufficient conditions for the interchange of limit and summation in the case of sequences of infinite series of a certain type. Ann. Math. (2) 14, 81–83 (1912–1913)Google Scholar
  211. 211.
    T.H. Hildebrandt, On uniform limitedness of sets of functional operations. Bull. Am. Math. Soc. 29, 309–315 (1923)MathSciNetMATHCrossRefGoogle Scholar
  212. 212.
    T.H. Hildebrandt, Über vollstetige, lineare Transformationen. Acta. Math. 51, 311–318 (1928)MathSciNetMATHCrossRefGoogle Scholar
  213. 213.
    T.H. Hildebrandt, On bounded functional operations. Trans. Am. Math. Soc. 36, 868–875 (1934)MathSciNetMATHCrossRefGoogle Scholar
  214. 214.
    E.W. Hobson, On some fundamental properties of Lebesgue integrals in a two-dimensional domain. Proc. Lond. Math. Soc. (2) 8, 22–39 (1910)Google Scholar
  215. 215.
    H. Hochstadt, Eduard Helly, father of the Hahn-Banach theorem. Math. Intell. 2 (3), 123–125 (1979)MathSciNetMATHCrossRefGoogle Scholar
  216. 216.
    R.B. Holmes, Geometric Functional Analysis and Its Applications (Springer, Berlin, 1975)MATHCrossRefGoogle Scholar
  217. 217.
    O. Hölder, Ueber einen Mittelwerthsatz. Götting. Nachr. 38–47 (1889)Google Scholar
  218. 218.
    L. Hörmander, Linear Differential Operators (Springer, Berlin, 1963)MATHCrossRefGoogle Scholar
  219. 219.
    L. Hörmander, The Analysis of Linear Partial Differential Operators I (Springer, Berlin, 1983)MATHGoogle Scholar
  220. 220.
    R.A. Hunt, On the convergence of Fourier series orthogonal expansions and their continuous analogues, in Proceedings of the Conference at Edwardsville 1967 (Southern Illinois University Press, Carbondale, IL, 1968), pp. 237–255Google Scholar
  221. 221.
    D. Jackson, Über die Genauigkeit der Annäherung stetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Dissertation, Göttingen, (1911)MATHGoogle Scholar
  222. 222.
    D. Jackson, On approximation by trigonometric sums and polynomials. Trans. Am. Math. Soc. 13, 491–515 (1912)MathSciNetMATHCrossRefGoogle Scholar
  223. 223.
    D. Jackson, The Theory of Approximation, vol. 11 (American Mathematical Society, Colloquium Publications, Providence, RI, 1930)MATHGoogle Scholar
  224. 224.
    C.G.J. Jacobi, De determinantibus functionalibus. J. Reine Angew. Math. 22, 319–359 (1841); [225] III, 393–438Google Scholar
  225. 225.
    C.G.J. Jacobi, Gesammelte Werke I-VIII (G. Reimer, Berlin, 1881–1891)Google Scholar
  226. 226.
    R.C. James, Characterizations of reflexivity. Stud. Math. 23, 205–216 (1964)MathSciNetMATHGoogle Scholar
  227. 227.
    V. Jarník, Bolzano and the Foundations of Mathematical Analysis (Society of Czechoslovak Mathematicians and Physicists, Prague, 1981)MATHGoogle Scholar
  228. 228.
    I. Joó, V. Komornik, On the equiconvergence of expansions by Riesz bases formed by eigenfunctions of the Schrödinger operator. Acta Sci. Math. (Szeged) 46, 357–375 (1983)MathSciNetMATHGoogle Scholar
  229. 229.
    C. Jordan, Sur la série de Fourier. C. R. Acad. Sci. Paris 92, 228–230 (1881); [232] IV, 393–395Google Scholar
  230. 230.
    C. Jordan, Cours d’analyse de l’École Polytechnique I-III (Gauthier-Villars, Paris, 1883)MATHGoogle Scholar
  231. 231.
    C. Jordan, Remarques sur les intégrales définies. J. Math. (4) 8, 69–99 (1892); [232] IV, 427–457Google Scholar
  232. 232.
    C. Jordan, Oeuvres I-IV (Gauthier-Villars, Paris, 1961–1964)Google Scholar
  233. 233.
    P. Jordan, J. von Neumann, On inner products in linear, metric spaces. Ann. Math. (2) 36 (3), 719–723 (1935)Google Scholar
  234. 234.
    M.I. Kadec, On strong and weak convergence (in Russian). Dokl. Akad. Nauk SSSR 122, 13–16 (1958)MathSciNetGoogle Scholar
  235. 235.
    M.I. Kadec, On the connection between weak and strong convergence (in Ukrainian). Dopovidi. Akad. Ukraïn RSR 9, 949–952 (1959)MathSciNetGoogle Scholar
  236. 236.
    M.I. Kadec, Spaces isomorphic to a locally uniformly convex space (in Russian). Izv. Vysš. Učebn. Zaved. Matematika 13 (6), 51–57 (1959)MathSciNetGoogle Scholar
  237. 237.
    J.-P. Kahane, Fourier Series; see J.-P. Kahane, P.-G. Lemarié-Rieusset, Fourier Series and Wavelets (Gordon and Breach, New York, 1995)Google Scholar
  238. 238.
    J.-P. Kahane, Y. Katznelson, Sur les ensembles de divergence des séries trigonométriques. Stud. Math. 26, 305–306 (1966)MathSciNetMATHGoogle Scholar
  239. 239.
    S. Kakutani, Weak topology and regularity of Banach spaces. Proc. Imp. Acad. Tokyo 15, 169–173 (1939)MathSciNetMATHCrossRefGoogle Scholar
  240. 240.
    S. Kakutani, Concrete representations of abstract (M)-spaces. (A characterization of the space of continuous functions). Ann. Math. (2) 42, 994–1024 (1941)Google Scholar
  241. 241.
    N.J. Kalton, An F-space with trivial dual where the Krein–Milman theorem holds. Isr. J. Math. 36, 41–50 (1980)MathSciNetMATHCrossRefGoogle Scholar
  242. 242.
    N.J. Kalton, N. Peck, A re-examination of the Roberts example of a compact convex set without extreme points. Math. Ann. 253, 89–101 (1980)MathSciNetMATHCrossRefGoogle Scholar
  243. 243.
    L.V. Kantorovich, G.P. Akilov, Functional Analysis, 2nd edn. (Pergamon Press, Oxford, 1982)MATHGoogle Scholar
  244. 244.
    W. Karush, Minima of Functions of Several Variables with Inequalities as Side Constraints. M.Sc. Dissertation. University of Chicago, Chicago (1939)Google Scholar
  245. 245.
    Y. Katznelson, An Introduction to Harmonic Analysis (Dover, New York, 1976)MATHGoogle Scholar
  246. 246.
    J. Kelley, Banach spaces with the extension property. Trans. Am. Math. Soc. 72, 323–326 (1952)MathSciNetMATHCrossRefGoogle Scholar
  247. 247.
    J. Kelley, General Topology (van Nostrand, New York, 1954)MATHGoogle Scholar
  248. 248.
    J. Kindler, A simple proof of the Daniell-Stone representation theorem. Am. Math. Mon. 90, 396–397 (1983)MathSciNetMATHCrossRefGoogle Scholar
  249. 249.
    A.A. Kirillov, A.D. Gvisiani, Theorems and Problems in Functional Analysis (Springer, New York, 1982)CrossRefGoogle Scholar
  250. 250.
    V.L. Klee, Jr., Convex sets in linear spaces I-II. Duke Math. J. 18, 443–466, 875–883 (1951)MathSciNetMATHCrossRefGoogle Scholar
  251. 251.
    A.N. Kolmogorov, Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel. Nachr. Ges. Wiss. Göttingen 9, 60–63 (1931); English translation: On the compactness of sets of functions in the case of convergence in the mean, in V.M. Tikhomirov (ed.), Selected Works of A.N. Kolmogorov, vol. I (Kluwer, Dordrecht, 1991), pp. 147–150Google Scholar
  252. 252.
    A.N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer, Berlin, 1933); English translation: Foundations of the Theory of Probability (Chelsea, New York, 1956)Google Scholar
  253. 253.
    A. Kolmogorov, Zur Normierbarkeit eines allgemeinen topologischen Raumes. Stud. Math. 5, 29–33 (1934)MATHGoogle Scholar
  254. 254.
    A.N. Kolmogorov, S.V. Fomin, Elements of the Theory of Functions and Functional Analysis (Dover, New York, 1999)MATHGoogle Scholar
  255. 255.
    V. Komornik, An equiconvergence theorem for the Schrödinger operator. Acta Math. Hungar. 44, 101–114 (1984)MathSciNetMATHCrossRefGoogle Scholar
  256. 256.
    V. Komornik, Sur l’équiconvergence des séries orthogonales et biorthogonales correspondant aux fonctions propres des opérateurs différentiels linéaires. C. R. Acad. Sci. Paris Sér. I Math. 299, 217–219 (1984)MathSciNetGoogle Scholar
  257. 257.
    V. Komornik, On the equiconvergence of eigenfunction expansions associated with ordinary linear differential operators. Acta Math. Hungar. 47, 261–280 (1986)MathSciNetMATHCrossRefGoogle Scholar
  258. 258.
    V. Komornik, A simple proof of Farkas’ lemma. Am. Math. Mon. 105, 949–950 (1998)MathSciNetMATHCrossRefGoogle Scholar
  259. 259.
    V. Komornik, D. Kong, W. Li, Hausdorff dimension of univoque sets and Devil’s staircase, arxiv: 1503.00475v1 [math. NT]Google Scholar
  260. 260.
    V. Komornik, P. Loreti, On the topological structure of univoque sets. J. Number Theory 122, 157–183 (2007)MathSciNetMATHCrossRefGoogle Scholar
  261. 261.
    V. Komornik, M. Yamamoto, On the determination of point sources. Inverse Prob. 18, 319–329 (2002)MathSciNetMATHCrossRefGoogle Scholar
  262. 262.
    V. Komornik, M. Yamamoto, Estimation of point sources and applications to inverse problems. Inverse Prob. 21, 2051–2070 (2005)MathSciNetMATHCrossRefGoogle Scholar
  263. 263.
    P.P. Korovkin, On the convergence of positive linear operators in the space of continuous functions (in Russian). Dokl. Akad. Nauk. SSSR 90, 961–964 (1953)MathSciNetGoogle Scholar
  264. 264.
    P.P. Korovkin, Linear Operators and Approximation Theory. Russian Monographs and Texts on Advanced Mathematics and Physics, vol. III (Gordon and Breach Publishers, Inc/Hindustan Publishing Corp., New York/Delhi, 1960)Google Scholar
  265. 265.
    C.A. Kottman, Subsets of the unit ball that are separated by more than one. Stud. Math. 53, 15–27 (1975)MathSciNetMATHGoogle Scholar
  266. 266.
    G. Köthe, Topological Vector Spaces I-II (Springer, Berlin, 1969, 1979)Google Scholar
  267. 267.
    M.A. Krasnoselskii, Ya.B. Rutitskii, Convex Functions and Orlicz Spaces (P. Noordhoff Ltd., Groningen, 1961)Google Scholar
  268. 268.
    M.G. Krein, S.G. Krein, On an inner characteristic of the set of all continuous functions defined on a bicompact Hausdorff space. Dokl. Akad. Nauk. SSSR 27, 429–430 (1940)MathSciNetMATHGoogle Scholar
  269. 269.
    M. Krein, D. Milman, On extreme points of regularly convex sets. Stud. Math. 9, 133–138 (1940)MathSciNetMATHGoogle Scholar
  270. 270.
    P. Krée, Intégration et théorie de la mesure. Une approche géométrique (Ellipses, Paris, 1997)Google Scholar
  271. 271.
    H.W. Kuhn, A.W. Tucker, Nonlinear programming, in Proceedings of 2nd Berkeley Symposium. (University of California Press, Berkeley, 1951), pp. 481–492Google Scholar
  272. 272.
    K. Kuratowski, La propriété de Baire dans les espaces métriques. Fund. Math. 16, 390–394 (1930)MATHGoogle Scholar
  273. 273.
    K. Kuratowski, Quelques problèmes concernant les espaces métriques non-séparables. Fund. Math. 25, 534–545 (1935)MATHGoogle Scholar
  274. 274.
    J. Kurzweil, Generalized ordinary differential equations and continuous dependence on a parameter (in Russian). Czechoslov. Math. J. 7 (82), 418–449 (1957)MathSciNetMATHGoogle Scholar
  275. 275.
    J. Kürschák, Analízis és analitikus geometria [Analysis and Analytic Geometry] (Budapest, 1920).Google Scholar
  276. 276.
    H.E. Lacey, The Hamel dimension of any infinite-dimensional separable Banach space is c. Am. Math. Mon. 80, 298 (1973)Google Scholar
  277. 277.
    M. Laczkovich, Equidecomposability and discrepancy; a solution of Tarski’s circle-squaring problem. J. Reine Angew. Math. 404, 77–117 (1990)MathSciNetMATHGoogle Scholar
  278. 278.
    M. Laczkovich, Conjecture and Proof (Typotex, Budapest, 1998)MATHGoogle Scholar
  279. 279.
    J.L. Lagrange, Solution de différents problèmes de calcul intégral. Miscellanea Taurinensia III, (1762–1765); [281] I, 471–668Google Scholar
  280. 280.
    J.L. Lagrange, Sur l’attraction des sphéroïdes elliptiques. Nouv. Mém. Acad. Royale Berlin (1773); [281] III, 619–649Google Scholar
  281. 281.
    J.L. Lagrange, Oeuvres I-XIV (Gauthier-Villars, Paris, 1867–1882)Google Scholar
  282. 282.
    E. Landau, Über einen Konvergenzsatz. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa, 25–27 (1907); [284] III, 273–275Google Scholar
  283. 283.
    E. Landau, Über die Approximation einer stetigen Funktion durch eine ganze rationale Funktion. Rend. Circ. Mat. Palermo 25, 337–345 (1908); [284] III, 402–410Google Scholar
  284. 284.
    E. Landau, Collected Works I-VIII (Thales, Essen, 1986)Google Scholar
  285. 285.
    R. Larsen, Functional Analysis. An Introduction (Marcel Dekker, New York, 1973)Google Scholar
  286. 286.
    H. Lebesgue, Sur l’approximation des fonctions. Bull. Sci. Math. 22, 10 p. (1898); [298] III, 11–20Google Scholar
  287. 287.
    H. Lebesgue, Sur une généralisation de l’intégrale définie. C. R. Acad. Sci. Paris 132, 1025–1027 (1901); [298] I, 197–199Google Scholar
  288. 288.
    H. Lebesgue, Intégrale, longueur, aire. Ann. Mat. Pura Appl. (3) 7, 231–359 (1902); [298] I, 201–331Google Scholar
  289. 289.
    H. Lebesgue, Sur les séries trigonométriques. Ann. Éc. Norm. (3) 20, 453–485 (1903); [298] III, 27–59Google Scholar
  290. 290.
    H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives (Gauthier-Villars, Paris, 1904); [298] II, 11–154Google Scholar
  291. 291.
    H. Lebesgue, Sur la divergence et la convergence non-uniforme des séries de Fourier. C. R. Acad. Sci. Paris 141, 875–877 (1905)MATHGoogle Scholar
  292. 292.
    H. Lebesgue, Leçons sur les séries trigonométriques (Gauthier-Villars, Paris, 1906)MATHGoogle Scholar
  293. 293.
    H. Lebesgue, Sur les fonctions dérivées. Atti Accad. Lincei Rend. 15, 3–8 (1906); [298] II, 159–164Google Scholar
  294. 294.
    H. Lebesgue, Sur la méthode de M. Goursat pour la résolution de l’équation de Fredholm. Bull. Soc. Math. France 36, 3–19 (1908); [298] III, 239–254Google Scholar
  295. 295.
    H. Lebesgue, Sur l’intégration des fonctions discontinues. Ann. Éc. Norm. (3) 27, 361–450 (1910); [298] II, 185–274Google Scholar
  296. 296.
    H. Lebesgue, Notice sur les travaux scientifiques de M. Henri Lebesgue (Impr. E. Privat, Toulouse, 1922); [298] I, 97–175Google Scholar
  297. 297.
    H. Lebesgue, Leçons sur l’intégration et la recherche des fonctions primitives, 2nd edn. (Paris, Gauthier-Villars, 1928)MATHGoogle Scholar
  298. 298.
    H. Lebesgue, Oeuvres scientifiques I-V (Université de Genève, Genève, 1972–1973)Google Scholar
  299. 299.
    J. Le Roux, Sur les intégrales des équations linéaires aux dérivées partielles du 2e ordre à 2 variables indépendantes. Ann. Éc. Norm. (3) 12, 227–316 (1895)Google Scholar
  300. 300.
    B. Levi, Sul principio di Dirichlet. Rend. Circ. Mat. Palermo 22, 293–360 (1906)MATHCrossRefGoogle Scholar
  301. 301.
    B. Levi, Sopra l’integrazione delle serie. Rend. Instituto Lombardo Sci. Lett. (2) 39, 775–780 (1906)Google Scholar
  302. 302.
    J.W. Lewin, A truly elementary approach to the bounded convergence theorem. Am. Math. Mon. 93 (5), 395–397 (1986)MathSciNetCrossRefGoogle Scholar
  303. 303.
    J. Lindenstrauss, L. Tzafriri, Classical Banach Spaces II: Function Spaces (Springer, Berlin, 1979)MATHCrossRefGoogle Scholar
  304. 304.
    J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites non linéaires (Dunod–Gauthier-Villars, Paris, 1969)MATHGoogle Scholar
  305. 305.
    J.-L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications I-III (Dunod, Paris, 1968–1970)Google Scholar
  306. 306.
    J. Liouville, Troisième mémoire sur le développement des fonctions ou parties de fonctions en séries dont les divers termes sont assoujettis à satisfaire à une même équation différentielle du second ordre, contenant un paramètre variable. J. Math. Pures Appl. 2, 418–437 (1837)Google Scholar
  307. 307.
    J.S. Lipiński, Une simple démonstration du théorème sur la dérivée d’une fonction de sauts. Colloq. Math. 8, 251–255 (1961)MathSciNetMATHGoogle Scholar
  308. 308.
    R. Lipschitz, De explicatione per series trigonometricas instituenda functionum unius variabilis arbitrariarum, etc. J. Reine Angew. Math. 63 (2), 296–308 (1864)MathSciNetCrossRefGoogle Scholar
  309. 309.
    L.A. Ljusternik, W.I. Sobolev, Elemente der Funtionalanalysis (Akademie-Verlag, Berlin, 1979)Google Scholar
  310. 310.
    S. Lozinski, On the convergence and summability of Fourier series and interpolation processes. Mat. Sb. N. S. 14 (56), 175–268 (1944)MathSciNetMATHGoogle Scholar
  311. 311.
    S. Lozinski, On a class of linear operators (in Russian). Dokl. Akad. Nauk SSSR 61, 193–196 (1948)Google Scholar
  312. 312.
    H. Löwig, Komplexe euklidische Räume von beliebiger endlicher oder unendlicher Dimensionszahl. Acta Sci. Math. Szeged 7, 1–33 (1934)MATHGoogle Scholar
  313. 313.
    N. Lusin, Sur la convergence des séries trigonométriques de Fourier. C. R. Acad. Sci. Paris 156, 1655–1658 (1913)MATHGoogle Scholar
  314. 314.
    J. Marcinkiewicz, Quelques remarques sur l’interpolation. Acta Sci. Math. (Szeged) 8, 127–130 (1937)MATHGoogle Scholar
  315. 315.
    A. Markov, On mean values and exterior densities. Mat. Sb. N. S. 4 (46), 165–190 (1938)Google Scholar
  316. 316.
    R.D. Mauldin (ed.), The Scottish Book: Mathematics from the Scottish Café (Birkhäuser, Boston, 1981)MATHGoogle Scholar
  317. 317.
    S. Mazur, Über konvexe Mengen in linearen normierten Räumen. Stud. Math. 4, 70–84 (1933)MATHGoogle Scholar
  318. 318.
    S. Mazur, On the generalized limit of bounded sequences. Colloq. Math. 2, 173–175 (1951)MathSciNetMATHGoogle Scholar
  319. 319.
    J. McCarthy, An everywhere continuous nowhere differentiable function. Am. Math. Mon. 60, 709 (1953)MathSciNetCrossRefGoogle Scholar
  320. 320.
    E.J. McShane, Linear functionals on certain Banach spaces. Proc. Am. Math. Soc. 1, 402–408 (1950)MathSciNetMATHCrossRefGoogle Scholar
  321. 321.
    R.E. Megginson, An Introduction to Banach Space Theory (Springer, New York, 1998)MATHCrossRefGoogle Scholar
  322. 322.
    D.P. Milman, On some criteria for the regularity of spaces of the type (B). C. R. (Doklady) Acad. Sci. URSS (N. S.) 20, 243–246 (1938)Google Scholar
  323. 323.
    H. Minkowski, Geometrie der Zahlen I (Teubner, Leipzig, 1896)MATHGoogle Scholar
  324. 324.
    H. Minkowski, Geometrie der Zahlen (Teubner, Leipzig, 1910)MATHGoogle Scholar
  325. 325.
    H. Minkowski, Theorie der konvexen Körper, insbesondere Begründung ihres Oberflächenbegriffs, [326] II, 131–229Google Scholar
  326. 326.
    H. Minkowski, Gesammelte Abhandlungen I-II (Teubner, Leipzig, 1911)MATHGoogle Scholar
  327. 327.
    A.F. Monna, Functional Analysis in Historical Perspective (Oosthoek, Utrecht, 1973)MATHGoogle Scholar
  328. 328.
    F.J. Murray, On complementary manifolds and projections in spaces L p and l p. Trans. Am. Math. Soc. 41, 138–152 (1937)MathSciNetMATHGoogle Scholar
  329. 329.
    Ch.H. Müntz, Über den Approximationssatz von Weierstrass. Mathematische Abhandlungen H.A. Schwarz gewidmet, (Springer, Berlin, 1914), pp. 303–312Google Scholar
  330. 330.
    L. Nachbin, A theorem of Hahn-Banach type for linear transformations. Trans. Am. Math. Soc. 68, 28–46 (1950)MathSciNetMATHCrossRefGoogle Scholar
  331. 331.
    L. Narici, E. Beckenstein, Topological Vector Spaces (Marcel Dekker, New York, 1985)MATHGoogle Scholar
  332. 332.
    I.P. Natanson, Theory of functions of a real variable I-II (Frederick Ungar Publishing, New York, 1955, 1961)Google Scholar
  333. 333.
    I.P. Natanson, Constructive Function Theory I-III (Ungar, New York, 1964)MATHGoogle Scholar
  334. 334.
    J. von Neumann, Mathematische Begründung der Quantenmechanik. Nachr. Gesell. Wiss. Göttingen. Math.-Phys. Kl., 1–57 (1927); [340] I, 151–207Google Scholar
  335. 335.
    J. von Neumann, Zur allgemeinen Theorie des Masses. Fund. Math. 13, 73–116 (1929); [340] I, 599–643Google Scholar
  336. 336.
    J. von Neumann, Zur Algebra der Funktionaloperationen und Theorie der Normalen Operatoren. Math. Ann. 102, 370–427 (1929–1930); [340] II, 86–143Google Scholar
  337. 337.
    J. von Neumann, Mathematische Grundlagen der Quantenmechanik (Springer, Berlin, 1932)MATHGoogle Scholar
  338. 338.
    J. von Neumann, On complete topological spaces. Trans. Am. Math. Soc. 37, 1–20 (1935); [340] II, 508–527Google Scholar
  339. 339.
    J. von Neumann, On rings of operators III. Ann. Math. 41, 94–161 (1940); [340] III, 161–228Google Scholar
  340. 340.
    J. von Neumann, Collected works I-VI (Pergamon Press, Oxford, 1972–1979).Google Scholar
  341. 341.
    M.A. Neumark, Normierte Algebren (VEB Deutscher Verlag der Wissenschaften, Berlin, 1959)MATHGoogle Scholar
  342. 342.
    O. Nikodým, Sur une généralisation des intégrales de M. Radon. Fund. Math. 15, 131–179 (1930)MATHGoogle Scholar
  343. 343.
    O. Nikodým, Sur le principe du minimum dans le problème de Dirichlet. Ann. Soc. Polon. Math. 10, 120–121 (1931)MATHGoogle Scholar
  344. 344.
    O. Nikodým, Sur le principe du minimum. Mathematica (Cluj) 9, 110–128 (1935)MATHGoogle Scholar
  345. 345.
    W.P. Novinger, Mean convergence in L p spaces. Proc. Am. Math. Soc. 34 (2), 627–628 (1972)MathSciNetMATHGoogle Scholar
  346. 346.
    V.F. Nikolaev, On the question of approximation of continuous functions by means of polynomials (in Russian). Dokl. Akad. Nauk SSSR 61, 201–204 (1948)MathSciNetGoogle Scholar
  347. 347.
    W. Orlicz, Über eine gewisse Klasse von Räumen vom Typus B. Bull. Int. Acad. Polon. Sci. A (8/9), 207–220 (1932)Google Scholar
  348. 348.
    W. Orlicz, Über Räume (L M), Bull. Int. Acad. Polon. Sci. A, 93–107 (1936)Google Scholar
  349. 349.
    W. Orlicz, Linear Functional Analysis, Series in Real Analysis, vol. 4 (World Scientific Publishing, River Edge, NJ, 1992)MATHGoogle Scholar
  350. 350.
    W. Osgood, Non uniform convergence and the integration of series term by term. Am. J. Math. 19, 155–190 (1897)MathSciNetMATHCrossRefGoogle Scholar
  351. 351.
    J.C. Oxtoby, Measure and Category (Springer, New York, 1971)MATHCrossRefGoogle Scholar
  352. 352.
    M.-A. Parseval, Mémoire sur les séries et sur l’intégration complète d’une équation aux différences partielles linéaires du second ordre, à coefficients constants. Mém. prés. par divers savants, Acad. des Sciences, Paris, (1) 1, 638–648 (1806)Google Scholar
  353. 353.
    G. Peano, Applicazioni geometriche del calcolo infinitesimale (Bocca, Torino, 1887)MATHGoogle Scholar
  354. 354.
    G. Peano, Sur une courbe qui remplit toute une aire. Math. Ann. 36, 157–160 (1890)MathSciNetCrossRefGoogle Scholar
  355. 355.
    R.R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation. Trans. Am. Math. Soc. 95, 238–255 (1960)MathSciNetMATHGoogle Scholar
  356. 356.
    O. Perron, Über den Integralbegriff. Sitzber. Heidelberg Akad. Wiss., Math. Naturw. Klasse Abt. A 16, 1–16 (1914)Google Scholar
  357. 357.
    B.J. Pettis, A note on regular Banach spaces. Bull. Am. Math. Soc. 44, 420–428 (1938)MathSciNetMATHCrossRefGoogle Scholar
  358. 358.
    B.J. Pettis, A proof that every uniformly convex space is reflexive. Duke Math. J. 5, 249–253 (1939)MathSciNetMATHCrossRefGoogle Scholar
  359. 359.
    R.R. Phelps, Lectures on Choquet’s Theorem (Van Nostrand, New York, 1966)MATHGoogle Scholar
  360. 360.
    J.-P. Pier, Intégration et mesure 1900–1950; [361], 517–564Google Scholar
  361. 361.
    J.-P. Pier (ed.), Development of Mathematics 1900–1950 (Birkhäuser, Basel, 1994)MATHGoogle Scholar
  362. 362.
    J.-P. Pier (ed.), Development of Mathematics 1950–2000 (Birkhäuser, Basel, 2000)MATHGoogle Scholar
  363. 363.
    H. Poincaré, Science and Hypothesis (The Walter Scott Publishing, New York, 1905)MATHGoogle Scholar
  364. 364.
    L.S. Pontryagin, Topological Groups, 3rd edn., Selected Works, vol. 2 (Gordon & Breach Science, New York, 1986)Google Scholar
  365. 365.
    A. Pringsheim, Grundlagen der allgemeinen Funktionenlehre, Encyklopädie der mathematischen Wissenschaften, II-1 (Teubner, Leipzig, 1899); French translation and adaptation: A. Pringsheim, J. Molk, Principes fondamentaux de la théorie des fonctions, Encyclopédie des sciences mathématiques, II-1, (Gauthier-Villars/Teubner, Paris/Leipzig, 1909)Google Scholar
  366. 366.
    J. Radon, Theorie und Anwendungen der absolut additiven Mengenfunktionen. Sitsber. Akad. Wiss. Wien 122, Abt. II a, 1295–1438 (1913)Google Scholar
  367. 367.
    M. Reed, B. Simon, Methods of Modern Mathematical Physics I-IV (Academic Press, New York, 1972–1979)Google Scholar
  368. 368.
    F. Rellich, Spektraltheorie in nichtseparabeln Räumen. Math. Ann. 110, 342–356 (1935)MathSciNetMATHCrossRefGoogle Scholar
  369. 369.
    I. Richards, On the Fourier inversion theorem for R 1. Proc. Amer. Math. Soc. 19 (1), 145 (1968)Google Scholar
  370. 370.
    B. Riemann, Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse, Inaugural dissertation, Göttingen, 1851; [372], 3–45; French translation: Principes fondamentaux pour une théorie générale des fonctions d’une grandeur variable complexe, Dissertation inaugurale de Riemann, Göttingen, 1851; [372], 1–56Google Scholar
  371. 371.
    B. Riemann, Ueber die Darstellberkeit einer Function durch eine trigonometrische Reihe, Habilitationsschrift, 1854, Abhandlungen der Königlichen Gesellschaft der Wissenschaften zu Göttingen 13 (1867); [372], 213–251. French translation: Sur la possibilité de représenter une fonction par une série trigonométrique, Bull. des Sciences Math. et Astron. (1) 5 (1873); [372], 225–272.Google Scholar
  372. 372.
    B. Riemann, Werke (Teubner, Leipzig, 1876); French translation: Oeuvres mathématiques de Riemann (Gauthier-Villars, Paris, 1898). English translation: Collected Works of Bernhard Riemann (Dover Publications, New York, 1953)Google Scholar
  373. 373.
    F. Riesz, Sur les systèmes orthogonaux de fonctions. C. R. Acad. Sci. Paris 144, 615–619 (1907); [392] I, 378–381Google Scholar
  374. 374.
    F. Riesz, Sur les systèmes orthogonaux de fonctions et l’équation de Fredholm. C. R. Acad. Sci. Paris 144, 734–736 (1907); [392] I, 382–385Google Scholar
  375. 375.
    F. Riesz, Sur une espèce de géométrie analytique des systèmes de fonctions sommables. C. R. Acad. Sci. Paris 144, 1409–1411 (1907); [392] I, 386–388Google Scholar
  376. 376.
    F. Riesz, Über orthogonale Funktionensysteme. Göttinger Nachr. 116–122 (1907); [392] I, 389–395Google Scholar
  377. 377.
    F. Riesz, Sur les suites de fonctions mesurables. C. R. Acad. Sci. Paris 148, 1303–1305 (1909); [392] I, 396–397, 405–406Google Scholar
  378. 378.
    F. Riesz, Sur les opérations fonctionnelles linéaires à une. C. R. Acad. Sci. Paris 149, 974–977 (1909); [392] I, 400–402Google Scholar
  379. 379.
    F. Riesz, Sur certains systèmes d’équations fonctionnelles et l’approximation des fonctions continues. C. R. Acad. Sci. Paris 150, 674–677 (1910); [392] I, 403–404, 398–399Google Scholar
  380. 380.
    F. Riesz, Untersuchungen über Systeme integrierbar Funktionen. Math. Ann. 69, 449–497 (1910); [392] I, 441–489Google Scholar
  381. 381.
    F. Riesz, Integrálható függvények sorozatai [Sequences of integrable functions]. Matematikai és Physikai Lapok 19, 165–182, 228–243 (1910); [392] I, 407–440Google Scholar
  382. 382.
    F. Riesz, Les systèmes d’équations linéaires à une infinité d’inconnues (Gauthier-Villars, Paris, 1913); [392] II, 829–1016Google Scholar
  383. 383.
    F. Riesz, Lineáris függvényegyenletekről [On linear functional equations]. Math. Term. Tud. Ért. 35, 544–579 (1917); [392] II, 1017–1052; German translation: Über lineare Funktionalgleichungen. Acta Math. 41, 71–98 (1918); [392] II, 1053–1080Google Scholar
  384. 384.
    F. Riesz, Su alcune disuguglianze. Boll. Unione Mat. Ital. 7, 77–79 (1928); [392] I, 519–521Google Scholar
  385. 385.
    F. Riesz, Sur la convergence en moyenne I-II. Acta Sci. Math. (Szeged) 4, 58–64, 182–185 (1928–1929); [392] I, 512–518, 522–525Google Scholar
  386. 386.
    F. Riesz, A monoton függvények differenciálhatóságáról [On the differentiability of monotone functions]. Mat. Fiz. Lapok 38, 125–131 (1931); [392] I, 243–249Google Scholar
  387. 387.
    F. Riesz, Sur l’existence de la dérivée des fonctions monotones et sur quelques problèmes qui s’y rattachent. Acta Sci. Math. (Szeged) 5, 208–221 (1930–32); [392] I, 250–263Google Scholar
  388. 388.
    M. Riesz, Sur les ensembles compacts de fonctions sommables. Acta Sci. Math. Szeged 6, 136–142 (1933)MATHGoogle Scholar
  389. 389.
    F. Riesz, Zur Theorie der Hilbertschen Raumes. Acta Sci. Math., 34–38 (1934–1935); [392] II, 1150–1154Google Scholar
  390. 390.
    F. Riesz, L’évolution de la notion d’intégrale depuis Lebesgue. Ann. Inst. Fourier 1, 29–42 (1949); [392] I, 327–340Google Scholar
  391. 391.
    F. Riesz, Nullahalmazok és szerepük az analízisben. Az I. Magyar Mat. Kongr. Közl., 204–214 (1952); [392] I, 353–362; French translation: Les ensembles de mesure nulle et leur rôle dans l’analyse, Az I. Magyar Mat. Kongr. Közl., English translation: Proceedings of the First Hungarian Mathematical Congress, 214–224 (1952); [392] I, 363–372Google Scholar
  392. 392.
    F. Riesz, Oeuvres complètes I-II, ed. by Á. Császár (Akadémiai Kiadó, Budapest, 1960)Google Scholar
  393. 393.
    F. Riesz, B. Sz.-Nagy, Über Kontraktionen des Hilbertschen Raumes [German]. Acta Univ. Szeged. Sect. Sci. Math. 10, 202–205 (1943)Google Scholar
  394. 394.
    F. Riesz, B. Sz.-Nagy, Leçons d’analyse fonctionnelle (Akadémiai Kiadó, Budapest, 1952); English translation: Functional Analysis, (Dover, New York, 1990)Google Scholar
  395. 395.
    J. Roberts, Pathological compact convex sets in the spaces L p , 0 < p < 1, The Altgeld Book 1975/76, University of IllinoisGoogle Scholar
  396. 396.
    J. Roberts, A compact convex set without extreme points. Stud. Math. 60, 255–266 (1977)MATHGoogle Scholar
  397. 397.
    A.P. Robertson, W. Robertson, Topological Vector Spaces (Cambridge University Press, 1973)MATHGoogle Scholar
  398. 398.
    R.T. Rockafellar, Conves Analysis (Princeton University Press, New Jersey, 1970)CrossRefGoogle Scholar
  399. 399.
    L.J. Rogers, An extension of a certain theorem in inequalities. Messenger Math. 17, 145–150 (1888)Google Scholar
  400. 400.
    S. Rolewicz, Metric Linear Spaces (Państwowe Wydawnictwo Naukowe, Varsovie, 1972)MATHGoogle Scholar
  401. 401.
    L.A. Rubel, Differentiability of monotonic functions. Colloq. Math. 10, 277–279 (1963)MathSciNetMATHGoogle Scholar
  402. 402.
    W. Rudin, Fourier Analysis on Groups (Wiley, New York, 1962)MATHGoogle Scholar
  403. 403.
    W. Rudin, Principles of Mathematical Analysis, 3rd edn. (McGraw-Hill, New York, 1976)MATHGoogle Scholar
  404. 404.
    W. Rudin, Well-distributed measurable sets. Am. Math. Mon. 90, 41–42 (1983)MathSciNetMATHCrossRefGoogle Scholar
  405. 405.
    W. Rudin, Real and Complex Analysis (McGraw-Hill, New York, 1987)MATHGoogle Scholar
  406. 406.
    W. Rudin, Functional Analysis (McGraw-Hill, New York, 1991)MATHGoogle Scholar
  407. 407.
    S. Russ, Bolzano’s analytic programme. Math. Intell. 14 (3), 45–53 (1992)MathSciNetMATHCrossRefGoogle Scholar
  408. 408.
    S. Saks, On some functionals. Trans. Am. Math. Soc. 35 (2), 549–556 and 35 (4), 965–970 (1933)Google Scholar
  409. 409.
    S. Saks, Theory of The Integral (Hafner, New York, 1937)MATHGoogle Scholar
  410. 410.
    S. Saks, Integration in abstract metric spaces. Duke Math. J. 4, 408–411 (1938)MathSciNetMATHCrossRefGoogle Scholar
  411. 411.
    H. Schaefer, Topological vector spaces, Second edition with M.P. Wolff, 1st edn. (Springer, Berlin, 1966), 2nd edn. (1999)Google Scholar
  412. 412.
    J. Schauder, Zur Theorie stetiger Abbildungen in Funktionenräumen. Math. Z. 26, 47–65 (1927)MathSciNetMATHCrossRefGoogle Scholar
  413. 413.
    J. Schauder, Über die Umkehrung linearer, stetiger Funktionaloperationen. Stud. Math. 2, 1–6 (1930)MathSciNetMATHGoogle Scholar
  414. 414.
    J. Schauder, Über lineare, vollstetige Funktionaloperationen. Stud. Math. 2, 183–196 (1930)MATHGoogle Scholar
  415. 415.
    E. Schmidt, Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener. Math. Ann. 63, 433–476 (1907)MathSciNetCrossRefGoogle Scholar
  416. 416.
    E. Schmidt, Über die Auflösung linearer Gleichungen mit unendlich vielen Unbekannten. Rend. Circ. Mat. Palermo 25, 53–77 (1908)CrossRefGoogle Scholar
  417. 417.
    I.J. Schoenberg, On the Peano curve of Lebesgue. Bull. Am. Math. Soc. 44 (8), 519 (1938)Google Scholar
  418. 418.
    I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen. J. Reine Angew. Math. 151, 79–111 (1920)MathSciNetMATHGoogle Scholar
  419. 419.
    J.T. Schwartz, A note on the space L p . Proc. Am. Math. Soc. 2, 270–275 (1951)MATHGoogle Scholar
  420. 420.
    L. Schwartz, Théorie des distributions (Hermann, Paris, 1966)MATHGoogle Scholar
  421. 421.
    Z. Semadeni, Banach Spaces of Continuous Functions I (Pánstwowe Wydawnictvo Naukowe, Warszawa, 1971)MATHGoogle Scholar
  422. 422.
    A. Shidfar, K. Sabetfakhiri, On the continuity of Van der Waerden’s function in the Hölder sense. Am. Math. Mon. 93, 375–376 (1986)MATHCrossRefGoogle Scholar
  423. 423.
    H.J.S. Smith, On the integration of discontinuous functions. Proc. Lond. Math. Soc. 6, 140–153 (1875)MathSciNetMATHGoogle Scholar
  424. 424.
    V.L. Šmulian, Linear topological spaces and their connection with the Banach spaces. Doklady Akad. Nauk SSSR (N. S.) 22, 471–473 (1939)MATHGoogle Scholar
  425. 425.
    V.L. Šmulian, Über lineare topologische Räume. Mat. Sb. N. S. (7) 49, 425–448 (1940)Google Scholar
  426. 426.
    S. Sobolev, Cauchy problem in functional spaces. Dokl. Akad. Nauk SSSR 3, 291–294 (1935) (in Russian)MATHGoogle Scholar
  427. 427.
    S. Sobolev, Méthode nouvelle à résoudre le problème de Cauchy pour les équations linéaires hyperboliques normales. Mat. Sb. 1 (43), 39–72 (1936)MATHGoogle Scholar
  428. 428.
    S.L. Sobolev, Some Applications of Functional Analysis in Mathematical Physics (American Mathematical Society, Providence RI, 1991)MATHGoogle Scholar
  429. 429.
    R. Solovay, A model of set theory where every set of reals is Lebesgue measurable. Ann. Math. 92, 1–56 (1970)MathSciNetMATHCrossRefGoogle Scholar
  430. 430.
    G.A. Soukhomlinov, Über Fortsetzung von linearen Funktionalen in linearen komplexen Räumen und linearen Quaternionräumen (in Russian, with a German abstract). Mat. Sb. N. S. (3) 4, 355–358 (1938)Google Scholar
  431. 431.
    L.A. Steen, Highlights in the history of spectral theory, Am. Math. Mon. 80, 359–381 (1973)MathSciNetMATHCrossRefGoogle Scholar
  432. 432.
    H. Steinhaus, Additive und stetige Funktionaloperationen. Math. Z. 5, 186–221 (1919)MathSciNetMATHCrossRefGoogle Scholar
  433. 433.
    V.A. Steklov, Sur la théorie de fermeture des systèmes de fonctions orthogonales dépendant d’un nombre quelconque de variables. Petersb. Denkschr. (8) 30, 4, 1–86 (1911)Google Scholar
  434. 434.
    V.A. Steklov, Théorème de fermeture pour les polynômes de Tchebychev–Laguerre. Izv. Ross. Akad. Nauk Ser. Mat. (6) 10, 633–642 (1916)Google Scholar
  435. 435.
    T.J. Stieltjes, Recherches sur les fractions continues. Ann. Toulouse 8, 1–122 (1894), 9, 1–47 (1895); [436] II, 402–566Google Scholar
  436. 436.
    T.J. Stieltjes, Oeuvres complètes I-II (Springer, Berlin, 1993)Google Scholar
  437. 437.
    O. Stolz, Ueber einen zu einer unendlichen Punktmenge gehörigen Grenzwerth. Math. Ann. 23, 152–156 (1884)MathSciNetCrossRefGoogle Scholar
  438. 438.
    O. Stolz, Die gleichmässige Convergenz von Functionen mehrerer Veränderlichen zu den dadurch sich ergebenden Grenzwerthen, dass einige derselben constanten Werthen sich nähern. Math. Ann. 26, 83–96 (1886)MathSciNetCrossRefGoogle Scholar
  439. 439.
    M.H. Stone, Linear Transformations in Hilbert Space (Amer. Math. Soc., New York, 1932)MATHGoogle Scholar
  440. 440.
    M.H. Stone, Application of the theory of Boolean rings to general topology, Trans. Am. Math. Soc. 41, 325–481 (1937)CrossRefGoogle Scholar
  441. 441.
    M.H. Stone, The generalized Weierstrass approximation theorem. Math. Mag. 11, 167–184, 237–254 (1947/48)Google Scholar
  442. 442.
    R.S. Strichartz, How to make wavelets. Am. Math. Mon. 100, 539–556 (1993)MathSciNetMATHCrossRefGoogle Scholar
  443. 443.
    P.G. Szabó, A matematikus Riesz testvérek. Válogatás Riesz Frigyes és Riesz Marcel levelezéséből [The Mathematician Riesz Brothers. Selected letters from the correspondence between Frederic and Marcel Riesz] (Magyar Tudománytörténeti Intézet, Budapest, 2010)Google Scholar
  444. 444.
    P.G. Szabó, Kiváló tisztelettel: Fejér Lipót és a Riesz testvérek levelezése magyar matematikusokkal [Respectfully: Correspondence of Leopold Fejér and the Riesz Brothers with Hungarian Mathematicians] (Magyar Tudománytörténeti Intézet, Budapest, 2011)Google Scholar
  445. 445.
    O. Szász, Über die Approximation stetiger Funktionen durch lineare Aggregate von Potenzen. Math. Ann. 77, 482–496 (1915–1916)Google Scholar
  446. 446.
    G. Szegő, Orthogonal Polynomials (American Mathematical Society, Providence, 1975)MATHGoogle Scholar
  447. 447.
    B. Sz.-Nagy, Spektraldarstellung linearer Transformationen des Hilbertschen Raumes (Springer, Berlin, 1942)Google Scholar
  448. 448.
    B. Sz.-Nagy, Introduction to Real Functions and Orthogonal Expansions (Oxford University Press, New York, 1965)Google Scholar
  449. 449.
    T. Takagi, A simple example of a continuous function without derivative. Proc. Phys. Math. Japan 1, 176–177 (1903)MATHGoogle Scholar
  450. 450.
    A.E. Taylor, The extension of linear functionals. Duke Math. J. 5, 538–547 (1939)MathSciNetMATHCrossRefGoogle Scholar
  451. 451.
    S.A. Telyakovsky, Collection of Problems on the Theory of Real Functions (in Russian) (Nauka, Moszkva, 1980)Google Scholar
  452. 452.
    K.J. Thomae, Ueber bestimmte integrale. Z. Math. Phys. 23, 67–68 (1878)Google Scholar
  453. 453.
    H. Tietze, Über Funktionen, die auf einer abgeschlossenen Menge stetig sind. J. Reine Angew. Math. 145, 9–14 (1910)MathSciNetMATHGoogle Scholar
  454. 454.
    A. Tychonoff, Ein Fixpunktsatz. Math. Ann. 111, 767–776 (1935)MathSciNetCrossRefGoogle Scholar
  455. 455.
    A. Toepler, Bemerkenswerte Eigenschaften der periodischen Reihen. Wiener Akad. Anz. 13, 205–209 (1876)Google Scholar
  456. 456.
    O. Toeplitz, Das algebrischen Analogen zu einem Satze von Fejér. Math. Z. 2, 187–197 (1918)MathSciNetMATHCrossRefGoogle Scholar
  457. 457.
    L. Tonelli, Sull’integrazione per parti. Atti Accad. Naz. Lincei (5), 18, 246–253 (1909)Google Scholar
  458. 458.
    V. Trénoguine, B. Pissarevski, T. Soboléva, Problèmes et exercices d’analyse fonctionnelle (Mir, Moscou, 1987)Google Scholar
  459. 459.
    N.-K. Tsing, Infinite-dimensional Banach spaces must have uncountable basis—an elementary proof. Am. Math. Mon. 91 (8), 505–506 (1984)MathSciNetMATHCrossRefGoogle Scholar
  460. 460.
    J.W. Tukey, Some notes on the separation of convex sets. Port. Math. 3, 95–102 (1942)MathSciNetMATHGoogle Scholar
  461. 461.
    P. Urysohn, Über die Mächtigkeit der zusammenhängenden Mengen. Math. Ann. 94, 262–295 (1925)MathSciNetMATHCrossRefGoogle Scholar
  462. 462.
    S. Vajda, Theory of Games and Linear Programming (Methuen, London, 1956)MATHGoogle Scholar
  463. 463.
    Ch.-J. de la Vallée-Poussin, Sur l’approximation des fonctions d’une variable réelle et de leurs dérivées par des polynômes et des suites limitées de Fourier. Bull. Acad. R.. Cl. Sci. 3 (1908), 193–254Google Scholar
  464. 464.
    Ch.-J. de la Vallée-Poussin, Réduction des intégrales doubles de Lebesgue: application à la définition des fonctions analytiques. Bull. Acad. Sci. Brux, 768–798 (1910)Google Scholar
  465. 465.
    Ch.-J. de la Vallée-Poussin, Sur l’intégrale de Lebesgue. Trans. Am. Math. Soc. 16, 435–501 (1915)Google Scholar
  466. 466.
    G. Vitali, Sul problema della misura dei gruppi di punti di una retta (Gamberini e Parmeggiani, Bologna, 1905)MATHGoogle Scholar
  467. 467.
    N.Ya. Vilenkin, Stories About Sets (Academic Press, New York, 1968)Google Scholar
  468. 468.
    N.Ya. Vilenkin, In Search of Infinity (Birkhäuser, Boston, 1995)Google Scholar
  469. 469.
    C. Visser, Note on linear operators. Proc. Acad. Amst. 40, 270–272 (1937)MATHGoogle Scholar
  470. 470.
    G. Vitali, Sulle funzioni integrali. Atti Accad. Sci. Torino 40, 1021–1034 (1905)MATHGoogle Scholar
  471. 471.
    G. Vitali, Sull’integrazione per serie. Rend. Circ. Mat. Palermo 23, 137–155 (1907)MATHCrossRefGoogle Scholar
  472. 472.
    V. Volterra, Sulla inversione degli integrali definiti I-IV. Atti Accad. Torino 31, 311–323, 400–408, 557–567, 693–708 (1896); [476] II, 216–254Google Scholar
  473. 473.
    V. Volterra, Sulla inversione degli integrali definiti. Atti R. Accad. Rend. Lincei. Cl. Sci. Fis. Mat. Nat. (5) 5, 177–185 (1896); [476] II, 255–262Google Scholar
  474. 474.
    V. Volterra, Sulla inversione degli integrali multipli. Atti R. Accad. Rend. Lincei. Cl. Sci. Fis. Mat. Nat. (5) 5, 289–300 (1896); [476] II, 263–275Google Scholar
  475. 475.
    V. Volterra, Sopra alcuni questioni di inversione di integrali definiti. Annali di Mat. (2) 25, 139–178 (1897); [476] II, 279–313Google Scholar
  476. 476.
    V. Volterra, Opere matematiche. Memorie e Note I-V (Accademia Nazionale dei Lincei, Roma, 1954–1962)Google Scholar
  477. 477.
    B.L. van der Waerden, Ein einfaches Beispiel einer nichtdifferenzierbaren stetiges Funktion. Math. Z. 32, 474–475 (1930)MathSciNetMATHCrossRefGoogle Scholar
  478. 478.
    S. Wagon, The Banach-Tarski Paradox (Cambridge University Press, Cambridge, 1985)MATHCrossRefGoogle Scholar
  479. 479.
    J.V. Wehausen, Transformations in linear topological spaces. Duke Math. J. 4, 157–169 (1938)MathSciNetMATHCrossRefGoogle Scholar
  480. 480.
    K. Weierstrass, Differential Rechnung. Vorlesung an dem Königlichen Gewerbeinstitute, manuscript of 1861, Math. Bibl., Humboldt Universität, BerlinGoogle Scholar
  481. 481.
    K. Weierstrass, Über continuirliche Functionen eines reellen Arguments, die für keinen Werth des letzteren einen bestimmten Differentialquotienten besitzen. Gelesen in der Königlich. Akademie der Wissenschaften, 18. Juli 1872; [484] II, 71–74Google Scholar
  482. 482.
    K. Weierstrass, Theorie der analytischen Funktionen, Vorlesung an der Univ. Berlin, manuscript of 1874, Math. Bibl., Humboldt Universität, BerlinGoogle Scholar
  483. 483.
    K. Weierstrsass, Über die analytische Darstellbarkeit sogenannter willkürlicher Funktionen reeller Argumente, Erste Mitteilung. Sitzungsberichte Akad. Berlin, 633–639 (1885); [484] III, 1–37. French translation: Sur la possibilité d’une représentation analytique des fonctions dites arbitraires d’une variable réelle, J. Math. Pures Appl. 2 (1886), 105–138Google Scholar
  484. 484.
    K. Weierstrsass, Mathematische Werke vol. I-VI, (Mayer & Müller, Berlin, 1894–1915), vol. VII, (Georg Olms Verlagsbuchhandlung, Hildesheim, 1927)Google Scholar
  485. 485.
    A. Weil, L’intégration dans les groupes topologiques et ses applications (Hermann, Paris, 1940)MATHGoogle Scholar
  486. 486.
    R. Whitley, An Elementary Proof of the Eberlein–Šmulian Theorem. Math. Ann. 172, 116–118 (1967)MathSciNetMATHCrossRefGoogle Scholar
  487. 487.
    N. Wiener, Limit in terms of continuous transformation. Bull. Soc. Math. France 50, 119–134 (1922)MathSciNetMATHGoogle Scholar
  488. 488.
    K. Yosida, Functional Analysis (Springer, Berlin, 1980)MATHCrossRefGoogle Scholar
  489. 489.
    W.H. Young, On classes of summable functions and their Fourier series. Proc. R. Soc. (A) 87, 225–229 (1912)MATHCrossRefGoogle Scholar
  490. 490.
    W.H. Young, The progress of mathematical analysis in the 20th century. Proc. Lond. Math. Soc. (2) 24 (1926), 421–434Google Scholar
  491. 491.
    L. Zajícek, An elementary proof of the one-dimensional density theorem. Am. Math. Mon. 86, 297–298 (1979)MathSciNetMATHCrossRefGoogle Scholar
  492. 492.
    M. Zorn, A remark on a method in transfinite algebra. Bull. Am. Math. Soc. 41, 667–670 (1935)MathSciNetMATHCrossRefGoogle Scholar
  493. 493.
    A. Zygmund, Trigonometric Series (Cambridge University Press, London, 1959)MATHGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Vilmos Komornik
    • 1
  1. 1.University of StrasbourgStrasbourgFrance

Personalised recommendations