Skip to main content

Flame Retardancy

  • Chapter
  • First Online:
Book cover Polymer Nanocomposites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1092 Accesses

Abstract

‘Combustion of polymeric materials’ is an important topic, not just from a scientific viewpoint, but also from a day-to-day living perspective. This chapter highlights the effect of various nanofillers in influencing the combustion properties of different polymers, compares their performance with traditional systems, and provides insights into combustion mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

EVA:

Ethylene vinyl acetate

GO:

Graphite oxide

PA:

Polyamide

PBB:

Polybrominated biphenyl

PBDD:

Polybrominated dioxin

PBDE:

Polybrominated diphenyl ether

PBDF:

Polybrominated furan

PCBs:

Polychlorinated biphenyls

PCDD:

Polychlorinated dibenzodioxin

PET:

Poly(ethylene terephalate)

PLA:

Poly(lactic acid)

POPs:

Persistent organic pollutants

PP:

Polypropylene

PS:

Polystyrene

PVC:

Poly(vinyl chloride)

TCDD:

Tetrachlorodibenzo-p-dioxin

FRs:

Flame retardants

HRR:

Heat release rate

MLR:

Mass loss rate

NIST:

National Institute of Standards and Technology

POSS:

Polyhedral oligomeric silsesquioxane

THR:

Total heat released

TTI:

Time to ignition

UL:

Underwriters Laboratories

ZrP:

Zirconium phosphate

References

  1. Dasari A, Yu ZZ, Cai GP, Mai Y-W (2013) Recent developments in the fire retardancy of polymeric materials. Prog Polym Sci 38:1357–1387

    Article  Google Scholar 

  2. Bourbigot S, Le Bras M, Duquesne S, Rochery M (2004) Recent advances for intumescent polymers. Macromol Mater Eng 289:499–511

    Article  Google Scholar 

  3. Green J (1996) Mechanisms for flame retardancy and smoke suppression—a review. J Fire Sci 14:426–442

    Article  Google Scholar 

  4. Morgan AB (2006) Flame retarded polymer layered silicate nanocomposites: a review of commercial and open literature systems. Polym Adv Technol 17:206–217

    Article  Google Scholar 

  5. Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethanes. Prog Polym Sci 34:1068–1133

    Article  Google Scholar 

  6. Kiliaris P, Papaspyrides CD (2010) Polymer/layered silicate (clay) nanocomposites: an overview of flame retardancy. Prog Polym Sci 35:902–958

    Article  Google Scholar 

  7. Beyer G (2005) Flame retardancy of nanocomposites—from research to reality review. Polym Polym Compos 13:529–537

    Google Scholar 

  8. Bourbigot S, Duquesne S (2007) Fire retardant polymers: recent developments and opportunities. J Mater Chem 17:2283–2300

    Article  Google Scholar 

  9. Dasari A, Lim SH, Yu ZZ, Mai Y-W (2007) Toughening, thermal stability, flame retardancy, and scratch-wear resistance of polymer-clay nanocomposites. Aust J Chem 60:496–518

    Article  Google Scholar 

  10. Laoutid F, Bonnaud L, Alexandre M, Lopez-Cuesta JM, Dubois P (2009) New prospects in flame retardant polymer materials: from fundamentals to nanocomposites. Mater Sci Eng Reports 63:100–125

    Article  Google Scholar 

  11. Levchik SV, Weil ED (2005) Flame retardancy of thermoplastic polyesters—a review of the recent literature. Polym Int 54:11–35

    Article  Google Scholar 

  12. Porter D, Metcalfe E, Thomas MJK (2000) Nanocomposite fire retardants—a review. Fire Mater 24:45–52

    Article  Google Scholar 

  13. Wang JQ, Chow WK (2005) A brief review on fire retardants for polymeric foams. J Appl Polym Sci 97:366–376

    Article  Google Scholar 

  14. Wichman I (2003) Material flammability, combustion, toxicity and fire hazard in transportation. Prog Energy Combust Sci 29:247–299

    Article  Google Scholar 

  15. Lewin M, Weil ED (2001) Mechanisms and modes of action in flame retardancy of polymers. In: Horrocks AR, Price D (eds) Fire retardant materials. Woodhead Publishing Limited and CRC Press LLC, Boca Raton, pp 31–68

    Chapter  Google Scholar 

  16. Camino G, Costa L, Dicortemiglia MPL (1991) Overview of fire retardant mechanisms. Polym Degrad Stab 33:131–154

    Article  Google Scholar 

  17. Cullis CF, Hirschler MM (1981) The combustion of organic polymers. Clarendon Press, Oxford University Press, New York, Oxford, pp 419

    Google Scholar 

  18. Law RJ, Allchin CR, De Boer J, Covaci A, Herzke D, Lepom P, Morris S, Tronczynski J, De Wit CA (2006) Levels and trends of brominated flame retardants in the European environment. Chemosphere 64:187–208

    Article  Google Scholar 

  19. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    Article  Google Scholar 

  20. Levchik SV, Weil ED (2006) A review of recent progress in phosphorus-based flame retardants. J Fire Sci 24:345–364

    Article  Google Scholar 

  21. Bourbigot S, Le Bras M, Dabrowski F, Gilman JW, Kashiwagi T (2000) PA-6 clay nanocomposite hybrid as char forming agent in intumescent formulations. Fire Mater 24:201–208

    Article  Google Scholar 

  22. Duquesne S, Samyn F, Bourbigot S, Amigouet P, Jouffret F, Shen K (2008) Influence of talc on the fire retardant properties of highly filled intumescent polypropylene composites. Polym Adv Technol 19:620–627

    Article  Google Scholar 

  23. Fontaine G, Bourbigot S (2009) Intumescent polylactide: a nonflammable material. J Appl Polym Sci 113:3860–3865

    Article  Google Scholar 

  24. Kozlowski R, Hassan MA, Obidzinski B, Shehata AB, Amer M (2008) Newly modified MMT and its application with intumescent additives as new flame retardant system for polyurethane polymer. Polym Plast Technol Eng 47:902–909

    Article  Google Scholar 

  25. Laoutid F, Ferry L, Leroy E, Lopezcuesta J (2006) Intumescent mineral fire retardant systems in ethylene–vinyl acetate copolymer: effect of silica particles on char cohesion. Polym Degrad Stab 91:2140–2145

    Article  Google Scholar 

  26. Lu H, Hu Y, Li M, Song L (2008) Effects of charring agents on the thermal and flammability properties of intumescent flame-retardant HDPE-based clay nanocomposites. Polym Plast Technol Eng 47:152–156

    Article  Google Scholar 

  27. Qu B, Xie R (2003) Intumescent char structures and flame-retardant mechanism of expandable graphite-based halogen-free flame-retardant linear low density polyethylene blends. Polym Int 52:1415

    Article  Google Scholar 

  28. Tang Y, Hu Y, Xiao J, Wang J, Song L, Fan W (2005) PA-6 and EVA alloy/clay nanocomposites as char forming agents in poly(propylene) intumescent formulations. Polym Adv Technol 16:338–343

    Article  Google Scholar 

  29. Alongi J, Han Z, Bourbigot S (2015) Intumescence: tradition versus novelty. A comprehensive review. Progress Polym Sci. doi:10.1016/j.progpolymsci.2015.04.010

    Google Scholar 

  30. Bourbigot S, Duquesne S (2012) Quantitative approach of intumescence by numerical simulation. Proc PMSE Preprints 106:48–49

    Google Scholar 

  31. CSIRO (2009) HIPS fireproof coatings can really take the heat. http://www.csiro.au/news/HIPS-fireproof-coatings.html. Accessed: 23 Dec 2014

  32. Lomakin SM, Zaikov GE (1999) Ecological aspects of polymer flame retardation. J Vinyl Add Tech 5:12–20

    Article  Google Scholar 

  33. Huwe JK, Davison K, Feil VJ, Larsen G, Lorentzsen M, Zaylskie R (2004) Levels of polychlorinated dibenzo-p-dioxins and dibenzofurans in cattle raised at agricultural research facilities across the USA and the influence of pentachlorophenol-treated wood. Food Addit Contam 21:182–194

    Article  Google Scholar 

  34. Feil VJ, Huwe JK, Zaylskie RG, Davison KL, Anderson VL, Marchello M (2000) Chlorinated dibenzo-p-dioxin and dibenzofuran concentrations in beef animals from a feeding study. J Agric Food Chem 48:6163–6173

    Article  Google Scholar 

  35. Luo XJ, Zhang XL, Liu J, Wu JP, Luo Y, Chen SJ (2009) Persistent halogenated compounds in waterbirds from an e-waste recycling region in South China. Environ Sci Technol 43:306–311

    Article  Google Scholar 

  36. Ma J, Addink R, Yun SH, Cheng JP, Wang WH, Kannan K (2009) Polybrominated dibenzo-p-dioxins/dibenzofurans and polybrominated diphenyl ethers in soil, vegetation, workshop-floor dust, and electronic shredder residue from an electronic waste recycling facility and in soils from a chemical industrial complex in Eastern China. Environ Sci Technol 43:7350–7356

    Article  Google Scholar 

  37. Gregory MR (2009) Environmental implications of plastic debris in marine settings- entanglement, ingestion, smothering, hangers-on, hitch-hiking and alien invasions. Philos Trans Royal Soc B: Biol Sci 364:2013–2025

    Article  Google Scholar 

  38. Landers JP, Bunce NJ (1991) The Ah receptor and the mechanism of dioxin toxicity. Biochem J 276:273–287

    Article  Google Scholar 

  39. Hahn ME (2002) Aryl hydrocarbon receptors: diversity and evolution. Chem Biol Interact 141:131–160

    Article  Google Scholar 

  40. Safe SH (1995) Modulation of gene expression and endocrine response pathways by 2,3,7,8-tetrachlorodibenzo-p-dioxin and related compounds. Pharmacol Ther 67:247–281

    Article  Google Scholar 

  41. Grassman J (1997) Acquired risk factors and susceptibility to environmental toxicants. Environ Toxicol Pharmacol 4:209–217

    Article  Google Scholar 

  42. Grassman JA, Masten SA, Walker NJ, Lucier GW (1998) Animal models of human response to dioxins. Environ Health Perspect 106:761–775

    Article  Google Scholar 

  43. van Leeuwen FXR, Feeley M, Schrenk D, Larsen JC, Farland W, Younes M (2000) Dioxins: WHO’s tolerable daily intake (TDI) revisited. Chemosphere 40:1095–1101

    Article  Google Scholar 

  44. Markarian J (2005) Environmental concerns push wire and cable forward. Plast Addit Compounds 7:24–27

    Google Scholar 

  45. Gilman JW, Kashiwagi T, Lichtenhan JD (1997) Nanocomposites: a revolutionary new flame retardant approach. SAMPE J 33:40–46

    Google Scholar 

  46. Beyer G (2006) Flame retardancy of nanocomposites based on organoclays and carbon nanotubes with aluminium trihydrate. Polym Adv Technol 17:218–225

    Article  Google Scholar 

  47. Hapuarachchi TD, Peijs T (2010) Multiwalled carbon nanotubes and sepiolite nanoclays as flame retardants for polylactide and its natural fibre reinforced composites. Compos A Appl Sci Manuf 41:954–963

    Article  Google Scholar 

  48. Alongi J, Frache A (2010) Flame retardancy properties of α-zirconium phosphate based composites. Polym Degrad Stab 95:1928–1933

    Article  Google Scholar 

  49. Dasari A, Cai GP, Yu ZZ, Mai Y-W (2010) Flame retardancy of polymer-clay nanocomposites. In: Tjong SC, Mai Y-W (eds) Physical properties of polymer nanocomposites. Woodhead Publishing Ltd., Cambridge, pp 347–403

    Google Scholar 

  50. Dasari A, Yu ZZ, Mai Y-W, Liu S (2007) Flame retardancy of highly filled polyamide 6/clay nanocomposites. Nanotechnology 18:445602 (pp 10)

    Google Scholar 

  51. Dasari A, Yu ZZ, Mai Y-W, Cai G, Song H (2009) Roles of graphite oxide, clay and POSS during the combustion of polyamide 6. Polymer 50:1577–1587

    Article  Google Scholar 

  52. Cai G, Dasari A, Yu Z-Z, Du X, Dai S, Mai Y-W, Wang J (2010) Fire response of polyamide 6 with layered and fibrillar nanofillers. Polym Degrad Stab 295:845–851

    Article  Google Scholar 

  53. González A, Dasari A, Herrero B, Plancher E, Santaren J, Esteban A, Lim SH (2012) Fire retardancy behavior of PLA based nanocomposites. Polym Degrad Stab 97:248–256

    Article  Google Scholar 

  54. Zhu J, Uhl FM, Morgan AB, Wilkie CA (2001) Studies on the mechanism by which the formation of nanocomposites enhances thermal stability. Chem Mater 13:4649–4654

    Article  Google Scholar 

  55. Fina A, Camino G (2011) Ignition mechanisms in polymers and polymer nanocomposites. Polym Adv Technol 22:1147–1155

    Article  Google Scholar 

  56. Jai Prakash BS, Bhat YS, Ravindra Reddy C (2011) Clays as sustainable catalysts for organic transformations. In: Humphrey J, Boyd DE (eds) Clay: types, properties and uses. Nova Science Publishers Inc., New York, pp 63–114

    Google Scholar 

  57. Zope IS, Dasari A, Camino G (2015) Elucidating the catalytic effect of metal ions in montmorillonite on thermal degradation of organic modifier. Mater Chem Phys 157:69–79

    Article  Google Scholar 

  58. Levchik SV, Weil ED, Lewin M (1999) Thermal decomposition of aliphatic nylons. Polym Int 48:532–557

    Article  Google Scholar 

  59. Madan SK, Denk HH (1965) Amides as ligands-II metallic complexes of ϵ-caprolactam. J Inorg Nucl Chem 27:1049–1058

    Article  Google Scholar 

  60. Sarda G, Peacock N (1963) Action of polar reagents on nylon 66. Nature 200:67–69

    Article  Google Scholar 

  61. Zope IS, Dasari A, Guan F, Yu ZZ (2016) Influence of metal ions on thermo-oxidative stability and combustion response of polyamide 6/clay nanocomposites. Polymer 92:102–113

    Google Scholar 

  62. Morgan AB, Bundy M (2007) Cone calorimeter analysis of UL-94V-rated plastics. Fire Mater 31:257–283

    Article  Google Scholar 

  63. Horacek H, Grabner R (1996) Advantages of flame retardants based on nitrogen compounds. Polym Degrad Stab 54:205–215

    Article  Google Scholar 

  64. Levchik SV, Weil ED (2005) Overview of recent developments in the flame retardancy of polycarbonates. Polym Int 54:981–998

    Article  Google Scholar 

  65. Yu D, Kleemeier M, Wu GM, Schartel B, Liu WQ, Hartwig A (2011) A low melting organic-inorganic glass and its effect on flame retardancy of clay/epoxy composites. Polymer 52:2120–2131

    Article  Google Scholar 

  66. Kroenke WJ (1986) Low melting sulfate glasses and glass-ceramics, and their utility as fire and smoke retarder additives for poly(vinyl chloride). J Mater Sci 21:1123–1133

    Article  Google Scholar 

  67. Shen KK, Kochesfahani S, Jouffret F (2008) Zinc borates as multifunctional polymer additives. Polym Adv Technol 19:469–474

    Article  Google Scholar 

  68. Gilman JW, Kashiwagi T, Morgan AB, Davis R, Harris JRH, Brassell L (2003) Flammability of polymer-clay nanocomposites consortium: final report. Gaithersburg, National Institute of Standards and Technology, p 63

    Google Scholar 

  69. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15:31–49

    Article  Google Scholar 

  70. Kashiwagi T, Harris RH Jr, Zhang X, Briber RM, Cipriano BH, Raghavan SR (2004) Flame retardant mechanism of polyamide 6-clay nanocomposites. Polymer 45:881–891

    Article  Google Scholar 

  71. Stretz HA (2009) Determination of montmorillonite nanocomposite aggregation rates using real time x-ray diffraction techniques at high temperatures, Report: NIST GCR 09-924. Gaithersburg, National Institute of Standards and Technology, pp 1–46

    Google Scholar 

  72. Morgan AB, Harris RH, Kashiwagi T, Chyall LJ, Gilman JW (2002) Flammability of polystyrene layered silicate (clay) nanocomposites: carbonaceous char formation. Fire Mater 26:247–253

    Article  Google Scholar 

  73. Nielsen LE (1967) Models for the permeability of filled polymer systems. J Macromol Sci Part A Chem 1:929–942

    Article  Google Scholar 

  74. Bharadwaj RK (2001) Modeling the barrier properties of polymer-layered silicate nanocomposites. Macromolecules 34:9189–9192

    Article  Google Scholar 

  75. Fredrickson GH, Bicerano J (1999) Barrier properties of oriented disk composites. J Chem Phys 110:2181–2188

    Article  Google Scholar 

  76. Lape NK, Nuxoll EE, Cussler EL (2004) Polydisperse flakes in barrier films. J Membr Sci 236:29–37

    Article  Google Scholar 

  77. Lu C, Mai, Y-W (2005). Influence of aspect ratio on barrier properties of polymer-clay nanocomposites. Phys Rev Lett 95:088303 (pp 4)

    Google Scholar 

  78. Kashiwagi T, Shields JR, Harris Jr RH, Awad WH (2003). Flame retardant mechanisms of a polymer clay nanocomposite. In: Lewin M (ed) Recent advances in flame retardancy of polymers. Business Communications Corporation, Norwalk, vol 14, pp 14–26

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Dasari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Dasari, A., Yu, ZZ., Mai, YW. (2016). Flame Retardancy. In: Polymer Nanocomposites. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6809-6_8

Download citation

Publish with us

Policies and ethics