Skip to main content

Mechanical Properties

  • Chapter
  • First Online:
Polymer Nanocomposites

Part of the book series: Engineering Materials and Processes ((EMP))

  • 1101 Accesses

Abstract

Generally, the stiffness of a polymer nanocomposite, even with agglomerated particles within the matrix, shows certain degree of improvement. However, the fracture toughness, in most of the polymer nanocomposites is reduced. The extent of changes in mechanical properties, however, depends on many factors such as the state of dispersion/distribution of nanoparticles, aspect ratio, and spatial orientation. This chapter highlights fundamental and recent major developments in the application of various nanoparticles for tuning the mechanical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CSR:

Core-shell rubber

CTBN:

Carboxyl-terminated butadiene acrylonitrile

DGEBA:

Diglycidyl ether of bisphenol A

EPDM-g-MA:

Maleic anhydride grafted ethylene-propylene-diene copolymer

EVA-g-MA:

Maleated poly(ethylene-co-vinylacetate)

HDPE:

High-density polyethylene

HIPS:

High-impact polystyrene

PA:

Polyamide

PBT:

Poly(butylene terephthalate)

PDFHA:

Poly(dodecafluoroheptyl acrylate)

PEEK:

Poly(ether ether ketone)

POE-g-MA:

Maleic anhydride grafted polyethylene-octene copolymer

PMMA:

Poly(methyl methacrylate)

PP:

Polypropylene

iPP:

Isotactic polypropylene

PTFE:

Polytetrafluoroethylene

PVDF:

Polyvinylidene fluoride

mSEBS or SEBS-g-MA:

Maleic anhydride grafted styrene-ethylene-butylene-styrene block copolymer

CB:

Carbon black

CNF:

Carbon nanofibers

MWCNTs:

Multi-walled carbon nanotubes

MMT:

Montmorillonite

AFM:

Atomic force microscopy

DN-4-PB:

Double-notch four-point bending

SPM:

Scanning probe microscopy

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

References

  1. Liu T, Phang IY, Shen L, Chow SY, Zhang WD (2004) Morphology and mechanical properties of multiwalled carbon nanotubes reinforced nylon-6 composites. Macromolecules 37:7214–7222

    Article  Google Scholar 

  2. Fornes TD, Paul DR (2003) Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44:4993–5013

    Article  Google Scholar 

  3. Lee HS, Fasulo PD, Rodgers WR, Paul DR (2005) TPO based nanocomposites. Part 1. Morphology and mechanical properties. Polymer 46:11673–11689

    Article  Google Scholar 

  4. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Article  Google Scholar 

  5. Fornes TD, Hunter DL, Paul DR (2004) Nylon-6 nanocomposites from alkylammonium-modified clay: the role of alkyl tails on exfoliation. Macromolecules 37:1793–1798

    Article  Google Scholar 

  6. Raja SN, Olson ACK, Limaye A, Thorkelsson K, Luong A, Lin L, Ritchie RO, Xu T, Alivisatos AP (2015) Influence of three-dimensional nanoparticle branching on the Young’s modulus of nanocomposites: effect of interface orientation. Proc Natl Acad Sci 112:6533–6538

    Article  Google Scholar 

  7. Halpin JC, Kardos JL (1976) Halpin-Tsai equations—review. Polym Eng Sci 16:344–352

    Article  Google Scholar 

  8. Halpin JC (1969) Stiffness and expansion estimates for oriented short fiber composites. J Compos Mater 3:732–740

    Google Scholar 

  9. Mori T, Tanaka K (1973) Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall 21:571–574

    Article  Google Scholar 

  10. Bhattacharyya AR, Pötschke P, Häußler L, Fischer D (2005) Reactive compatibilization of melt mixed PA6/SWNT composites: mechanical properties and morphology. Macromol Chem Phys 206:2084–2095

    Article  Google Scholar 

  11. Wu S (1998) A generalized criterion for rubber toughening: the critical matrix ligament thickness. J Appl Polym Sci 35:549–561

    Article  Google Scholar 

  12. Pearson RA, Yee AF (1991) Influence of particle size and particle size distribution on toughening mechanisms in rubber-modified epoxies. J Mater Sci 26:3828–3844

    Article  Google Scholar 

  13. Chen XH, Mai Y-W (1998) Micromechanics of rubber-toughened polymers. J Mater Sci 33:3529–3539

    Article  Google Scholar 

  14. Kinloch AJ, Young RJ (1995) Toughened multiphase plastics. In: Kinloch AJ, Young RJ (eds) Fracture behaviour of polymers: part II. Springer Science, The Netherlands, pp 421–471

    Chapter  Google Scholar 

  15. Kinloch A (1985) Mechanics and mechanisms of fracture of thermosetting epoxy polymers. In: Epoxy resins and composites I, vol 72. Springer Berlin/Heidelberg, pp 45–67

    Google Scholar 

  16. Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: II. High-density polyethylene toughened with calcium carbonate filler particles. Polymer 40:2347–2365

    Article  Google Scholar 

  17. Lazzeri A, Zebarjad SM, Pracella M, Cavalier K, Rosa R (2005) Filler toughening of plastics. Part 1-The effect of surface interactions on physico-mechanical properties and rheological behaviour of ultrafine CaCO3/HDPE nanocomposites. Polymer 46:827–844

    Article  Google Scholar 

  18. Thio YS, Argon AS, Cohen RE (2004) Role of interfacial adhesion strength on toughening polypropylene with rigid particles. Polymer 45:3139–3147

    Article  Google Scholar 

  19. Zuiderduin WCJ, Westzaan C, Huétink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44:261–275

    Article  Google Scholar 

  20. Demjen Z, Pukanszky B, Foldes E, Nagy J (1997) Interaction of silane coupling agents with CaCO3. J Colloid Interface Sci 190:427–436

    Article  Google Scholar 

  21. Zhang QX, Yu ZZ, Xie XL, Mai Y-W (2004) Crystallization and impact energy of polypropylene/CaCO3 nanocomposites with nonionic modifier. Polymer 45:5985–5994

    Article  Google Scholar 

  22. Haworth B, Raymond CL, Sutherland I (2001) Polyethylene compounds containing mineral fillers modified by acid coatings. 2: factors influencing mechanical properties. Polym Eng Sci 41:1345–1364

    Article  Google Scholar 

  23. Argon AS, Cohen RE (2003) Toughenability of polymers. Polymer 44:6013–6032

    Article  Google Scholar 

  24. Bartczak Z, Argon AS, Cohen RE, Weinberg M (1999) Toughness mechanism in semi-crystalline polymer blends: I. High-density polyethylene toughened with rubbers. Polymer 40:2331–2346

    Article  Google Scholar 

  25. Wilbrink MWL, Argon AS, Cohen RE, Weinberg M (2001) Toughenability of nylon-6 with CaCO3 filler particles: new findings and general principles. Polymer 42:10155–10180

    Article  Google Scholar 

  26. Thio YS, Argon AS, Cohen RE, Weinberg M (2002) Toughening of isotactic polypropylene with CaCO3 particles. Polymer 43:3661–3674

    Article  Google Scholar 

  27. Lin Y, Chen H, Chan C-M, Wu J (2010) The toughening mechanism of polypropylene/calcium carbonate nanocomposites. Polymer 51:3277–3284

    Article  Google Scholar 

  28. Lin Y, Chen H, Chan C-M, Wu J (2008) High impact toughness polypropylene/CaCO3 nanocomposites and the toughening mechanism. Macromolecules 41:9204–9213

    Article  Google Scholar 

  29. Becker O, Cheng YB, Varley RJ, Simon GP (2003) Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules 36:1616–1625

    Article  Google Scholar 

  30. Wang K, Chen L, Wu JS, Toh ML, He CB, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    Article  Google Scholar 

  31. Satapathy BK, Weidisch R, Pötschke P, Janke A (2007) Tough-to-brittle transition in multiwalled carbon nanotube (MWNT)/polycarbonate nanocomposites. Compos Sci Technol 67:867–879

    Article  Google Scholar 

  32. Gorga RE, Cohen RE (2004) Toughness enhancements in poly(methyl methacrylate) by addition of oriented multiwall carbon nanotubes. J Polym Sci Part B Polym Phys 42:2690–2702

    Article  Google Scholar 

  33. Ma PC, Kim J-K, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965–2972

    Article  Google Scholar 

  34. Barber AH, Cohen SR, Wagner HD (2003) Measurement of carbon nanotube-polymer interfacial strength. Appl Phys Lett 82:4140–4142

    Article  Google Scholar 

  35. Cooper CA, Cohen SR, Barber AH, Wagner HD (2002) Detachment of nanotubes from a polymer matrix. Appl Phys Lett 81:3873–3875

    Article  Google Scholar 

  36. Barber AH, Cohen SR, Eitan A, Schadler LS, Wagner HD (2006) Fracture transitions at a carbon-nanotube/polymer interface. Adv Mater 18:83–87

    Article  Google Scholar 

  37. Windle AH (2007) Two defining moments: a personal view by Prof. Alan H. Windle. Compos Sci Technol 67:929–930

    Article  Google Scholar 

  38. Palmeri MJ, Putz KW, Brinson LC (2010) Sacrificial bonds in stacked-cup carbon nanofibers: biomimetic toughening mechanisms for composite systems. ACS Nano 4:4256–4264

    Article  Google Scholar 

  39. Johnsen BB, Kinloch AJ, Mohammed RD, Taylor AC, Sprenger S (2007) Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48:530–541

    Article  Google Scholar 

  40. Bray DJ, Dittanet P, Guild FJ, Kinloch AJ, Masania K, Pearson RA, Taylor AC (2013) The modelling of the toughening of epoxy polymers via silica nanoparticles: the effects of volume fraction and particle size. Polymer 54:7022–7032

    Article  Google Scholar 

  41. Guild FJ, Kinloch AJ, Taylor AC (2010) Particle cavitation in rubber toughened epoxies: the role of particle size. J Mater Sci 45:3882–3894

    Article  Google Scholar 

  42. Liu H-Y, Wang GT, Mai Y-W, Zeng Y (2011) On fracture toughness of nano-particle modified epoxy. Compos Part B 42:2170–2175

    Article  Google Scholar 

  43. Zhang H, Zhang Z, Friedrich K, Eger C (2006) Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater 54:1833–1842

    Article  Google Scholar 

  44. Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562

    Article  Google Scholar 

  45. Wang K, Chen L, Wu JS, Toh ML, He CB, Yee AF (2005) Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms. Macromolecules 38:788–800

    Article  Google Scholar 

  46. Zerda AS, Lesser AJ (2001) Intercalated clay nanocomposites: morphology, mechanics, and fracture behavior. J Polym Sci Part B Polym Phys 39:1137–1146

    Article  Google Scholar 

  47. Frohlich J, Golombowski D, Thomann R, Mulhaupt R (2004) Synthesis and characterisation of anhydride-cured epoxy nanocomposites containing layered silicates modified with phenolic alkylimidazolineamide cations. Macromol Mater Eng 289:13–19

    Article  Google Scholar 

  48. Zilg C, Mulhaupt R, Finter J (1999) Morphology and toughness/stiffness balance of nanocomposites based upon anhydride-cured epoxy resins and layered silicates. Macromol Chem Phys 200:661–670

    Article  Google Scholar 

  49. Becker O, Cheng YB, Varley RJ, Simon GP (2003) Layered silicate nanocomposites based on various high-functionality epoxy resins: the influence of cure temperature on morphology, mechanical properties, and free volume. Macromolecules 36:1616–1625

    Article  Google Scholar 

  50. Kinloch AJ, Taylor AC (2003) Mechanical and fracture properties of epoxy/inorganic micro- and nano-composites. J Mater Sci Lett 22:1439–1442

    Article  Google Scholar 

  51. Kim GM, Lee DH, Hoffmann B, Kressler J, Stoppelmann G (2001) Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 42:1095–1100

    Article  Google Scholar 

  52. Kim GM, Goerlitz S, Michler GH (2007) Deformation mechanism of nylon 6/layered silicate nanocomposites: role of the layered silicate. J Appl Polym Sci 105:38–48

    Article  Google Scholar 

  53. Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis EP (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173–1177

    Article  Google Scholar 

  54. Marouf BT, Mai Y-W, Bagheri R, Pearson RA (2016) Toughening of epoxy nanocomposites: nano and hybrid effects. Polym Rev 56:70–112

    Google Scholar 

  55. Gersappe D (2002) Molecular mechanisms of failure in polymer nanocomposites. Phys Rev Lett 89:058301

    Article  Google Scholar 

  56. Shah D, Maiti P, Jiang DD, Batt CA, Giannelis EP (2005) Effect of nanoparticle mobility on toughness of polymer nanocomposites. Adv Mater 17:525–528

    Article  Google Scholar 

  57. Zhou TH, Ruan WH, Rong MZ, Zhang MQ, Mai YL (2007) Keys to toughening of non-layered nanoparticles/polymer composites. Adv Mater 19:2667–2671

    Article  Google Scholar 

  58. Bhattacharyya AR, Sreekumar TV, Liu T, Kumar S, Ericson LM, Hauge RH (2003) Crystallization and orientation studies in polypropylene/single wall carbon nanotube composite. Polymer 44:2373–2377

    Article  Google Scholar 

  59. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly(methyl methacrylate)/carbon nanotube composites. Mater Sci Eng A 271:395–400

    Article  Google Scholar 

  60. He C, Liu T, Tjiu WC, Sue HJ, Yee AF (2008) Microdeformation and fracture mechanisms in polyamide-6/organoclay nanocomposites. Macromolecules 41:193–202

    Article  Google Scholar 

  61. Dasari A, Lim SH, Yu ZZ, Mai Y-W (2007) Toughening, thermal stability, flame retardancy, and scratch-wear resistance of polymer-clay nanocomposites. Aust J Chem 60:496–518

    Article  Google Scholar 

  62. Dasari A, Yu ZZ, Mai Y-W, Hu GH, Varlet JL (2005) Clay exfoliation and organic modification on wear of nylon 6 nanocomposites processed by different routes. Compos Sci Technol 65:2314–2328

    Article  Google Scholar 

  63. Yu ZZ, Hu GH, Varlet J, Dasari A, Mai Y-W (2005) Water-assisted melt compounding of nylon-6/pristine montmorillonite nanocomposites. J Polym Sci Part B Polym Phys 43:1100–1112

    Article  Google Scholar 

  64. Chen L, Wong SC, Pisharath S (2003) Fracture properties of nanoclay-filled polypropylene. J Appl Polym Sci 88:3298–3305

    Article  Google Scholar 

  65. Dasari A, Yu ZZ, Yang MS, Zhang QX, Xie XL, Mai Y-W (2006) Micro- and nano-scale deformation behavior of nylon 66-based binary and ternary nanocomposites. Compos Sci Technol 66:3097–3114

    Article  Google Scholar 

  66. Yu ZZ, Yang MS, Zhang QX, Zhao CG, Mai Y-W (2003) Dispersion and distribution of organically modified montmorillonite in nylon-66 matrix. J Polym Sci Part B Polym Phys 41:1234–1243

    Article  Google Scholar 

  67. Chen L, Phang IY, Wong SC, Lv PF, Liu TX (2006) Embrittlement mechanisms of nylon 66/organoclay nanocomposites prepared by melt-compounding process. Mater Manuf Process 21:153–158

    Article  Google Scholar 

  68. Lim SH, Dasari A, Yu ZZ, Mai Y-W, Liu SL, Yong MS (2007) Fracture toughness of nylon 6/organoclay/elastomer nanocomposites. Compos Sci Technol 67:2914–2923

    Article  Google Scholar 

  69. Hsiao BS, Chen EJ (1990) Transcrystalline interphase in advanced polymer composites. In: Ishida H (ed) Controlled interphases in composite materials. Elsevier Science, New York, pp 613–622

    Chapter  Google Scholar 

  70. Chen EJH, Hsiao BS (1992) The effects of transcrystalline interphase in advanced polymer composites. Polym Eng Sci 32:280–286

    Article  Google Scholar 

  71. Gaur U, Desio G, Miller B (1989) Interfacial adhesion in fiber reinforced thermoplastic composites. Plast Eng 45:43–45

    Google Scholar 

  72. Gati A, Wagner HD (1997) Stress transfer efficiency in semicrystalline-based composites comprising transcrystalline interlayers. Macromolecules 30:3933–3935

    Article  Google Scholar 

  73. Dasari A, Yu ZZ, Mai Y-W (2007) Transcrystalline regions in the vicinity of nanofillers in polyamide-6. Macromolecules 40:123–130

    Article  Google Scholar 

  74. Dasari A, Lim SH, Mo M, Yu ZZ, Mai Y-W (2010) Structural variations and mobility concept in polymer nanocomposites. The University of Sydney, unpublished work

    Google Scholar 

  75. Dasari A, Lim SH, Yu ZZ, Mai Y-W (2009) Fracture properties and mechanisms of polyamide/clay nanocomposites. In: Karger-Kocsis J, Fakirov S (eds) Nano- and micro-mechanics of polymer blends and composites. Hanser Publishers, Munich, pp 377–423

    Chapter  Google Scholar 

  76. Dasari A, Yu ZZ, Mai Y-W (2007) Nanoscratching of nylon 66-based ternary nanocomposites. Acta Mater 55:635–646

    Article  Google Scholar 

  77. Dasari A, Yu ZZ, Mai Y-W, Yang MS (2008) The location and extent of exfoliation of clay on the fracture mechanisms in nylon 66-based ternary nanocomposites. J Nanosci Nanotechnol 8:1901–1912

    Article  Google Scholar 

  78. Kelnar I, Kotek J, Kapralkova L, Munteanu BS (2005) Polyamide nanocomposites with improved toughness. J Appl Polym Sci 96:288–293

    Article  Google Scholar 

  79. Wang K, Wang C, Li J, Su JX, Zhang Q, Du R, Fu Q (2007) Effects of clay on phase morphology and mechanical properties in polyamide 6/EPDM-g-MA/organoclay ternary nanocomposites. Polymer 48:2144–2154

    Article  Google Scholar 

  80. Li YM, Wei GX, Sue HJ (2002) Morphology and toughening mechanisms in clay-modified styrene-butadiene-styrene rubber-toughened polypropylene. J Mater Sci 37:2447–2459

    Article  Google Scholar 

  81. Liu WP, Hoa SV, Pugh M (2004) Morphology and performance of epoxy nanacomposites modified with organoclay and rubber. Polym Eng Sci 44:1178–1186

    Article  Google Scholar 

  82. Gam KT, Miyamoto M, Nishimura R, Sue HJ (2003) Fracture behavior of core-shell rubber-modified clay-epoxy nanocomposites. Polym Eng Sci 43:1635–1645

    Article  Google Scholar 

  83. Tjong SC, Meng YZ (2003) Impact-modified polypropylene/vermiculite nanocomposites. J Polym Sci Part B Polym Phys 41:2332–2341

    Article  Google Scholar 

  84. Contreras V, Cafiero M, Da Silva S, Rosales C, Perera R, Matos M (2006) Characterization and tensile properties of ternary blends with PA-6 nanocomposites. Polym Eng Sci 46:1111–1120

    Article  Google Scholar 

  85. Dasari A, Yu ZZ, Mai Y-W (2005) Effect of blending sequence on microstructure of ternary nanocomposites. Polymer 46:5986–5991

    Article  Google Scholar 

  86. Dasari A, Yu ZZ, Mai Y-W (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polymer 50:4112–4121

    Article  Google Scholar 

  87. Lim SH, Dasari A, Yu ZZ, Mai Y-W, Liu S, Yong MS (2007) Fracture toughness of nylon 6/organoclay/elastomer nanocomposites. Compos Sci Technol 67:2914–2923

    Article  Google Scholar 

  88. Gonzalez I, Eguiazabal JI, Nazabal J (2006) Rubber-toughened polyamide 6/clay nanocomposites. Compos Sci Technol 66:1833–1843

    Article  Google Scholar 

  89. Li XC, Park HM, Lee JO, Ha CS (2002) Effect of blending sequence on the microstructure and properties of PBT/EVA-g-MAH/organoclay ternary nanocomposites. Polym Eng Sci 42:2156–2164

    Article  Google Scholar 

  90. Bagheri R, Pearson RA (1996) Role of particle cavitation in rubber-toughened epoxies: 1. Microvoid toughening. Polymer 37:4529–4538

    Article  Google Scholar 

  91. Huang Y, Kinloch AJ (1992) The toughness of epoxy polymers containing microvoids. Polymer 33:1330–1332

    Article  Google Scholar 

  92. Dasari A, Zhang QX, Yu ZZ, Mai Y-W (2010) Toughening polypropylene and Its nanocomposites with submicrometer voids. Macromolecules 43:5734–5739

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Dasari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Dasari, A., Yu, ZZ., Mai, YW. (2016). Mechanical Properties. In: Polymer Nanocomposites. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6809-6_6

Download citation

Publish with us

Policies and ethics