• Aravind Dasari
  • Zhong-Zhen Yu
  • Yiu-Wing Mai
Part of the Engineering Materials and Processes book series (EMP)


In Chaps.  3 and  4, the importance of surface modification of nanoparticles and the critical role played by the polymer–particle interface in controlling the dispersion (and distribution) of nanoparticles in polymeric matrices was established. The next important question is, how does the presence of nanoparticles affect the orientation of polymer chains (or interfacial region) in their vicinity and the thickness of this ‘influential interface’? This is the main focus of this chapter.


Crystallization Temperature Crystallization Behavior Clay Layer Interparticle Distance Clay Platelet 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of Abbreviations

Polymers and Other Organic Compounds


High-density polyethylene


Poly(ethylene-co-acrylic acid)


Ethylene propylene rubber






Polybutylene terephthalate








Polyethylene glycol


Poly(ethylene terephthalate)


Poly(methyl methacrylate)


Maleic anhydride grafted polyethylene–octene copolymer




Polyphenylene oxide






Polyvinylidene fluoride



Carbon black


Carbon nanofiber


Carbon nanotube




Polyhedral oligomeric silsesquioxane

Characterization Techniques


Atomic force microscopy


Nuclear magnetic resonance spectroscopy


Scanning electron microscopy


Transmission electron microscopy


X-ray photoelectron spectroscopy


X-ray diffraction


  1. 1.
    Fornes TD, Paul DR (2003) Crystallization behavior of nylon 6 nanocomposites. Polymer 44:3945CrossRefGoogle Scholar
  2. 2.
    Fornes TD, Yoon PJ, Paul DR (2003) Polymer matrix degradation and color formation in melt processed nylon 6/clay nanocomposites. Polymer 44:7545CrossRefGoogle Scholar
  3. 3.
    Zuiderduin WCJ, Westzaan C, Huetink J, Gaymans RJ (2003) Toughening of polypropylene with calcium carbonate particles. Polymer 44:261CrossRefGoogle Scholar
  4. 4.
    Premphet K, Horanont P (1999) Influence of stearic acid treatment of filler particles on the structure and properties of ternary-phase polypropylene composites. J Appl Polym Sci 74:3445CrossRefGoogle Scholar
  5. 5.
    Chan CM, Wu JS, Li JX, Cheung YK (2002) Polypropylene/calcium carbonate nanocomposites. Polymer 43:2981CrossRefGoogle Scholar
  6. 6.
    Zhang Q-X, Yu Z-Z, Yang MS, Ma J, Mai Y-W (2003) Multiple melting and crystallization of nylon-66/montmorillonite nanocomposites. J Polym Sci Part B: Polym Phys 41:2861Google Scholar
  7. 7.
    Maiti P, Okamoto M (2003) Crystallization controlled by silicate surfaces in nylon 6-clay nanocomposites. Macromol Mater Eng 288:440CrossRefGoogle Scholar
  8. 8.
    Dasari A, Lim SH, Mo M, Yu ZZ, Mai Y-W (2010) Structural variations and mobility concept in polymer nanocomposites. Unpublished workGoogle Scholar
  9. 9.
    Yang H, Bhimaraj P, Yang L, Siegel RW, Schadler LS (2007) Crystal growth in alumina/ poly(ethylene terephthalate) nanocomposite films. J Polym Sci Part B: Polym Phys 45:747Google Scholar
  10. 10.
    Lincoln DM, Vaia RA, Krishnamoorti R (2004) Isothermal crystallization of nylon-6/montmorillonite nanocomposites. Macromolecules 37:4554CrossRefGoogle Scholar
  11. 11.
    Fujimoto K, Yoshikawa M, Katahira S, Yasue K (2000) Crystal structure of nylon 6/inorganic layered silicate nanocomposite film. Kobunshi Ronbunshu 57:433CrossRefGoogle Scholar
  12. 12.
    Lincoln DM, Vaia RA, Wang ZG, Hsiao BS, Krishnamoorti R (2001) Temperature dependence of polymer crystalline morphology in nylon 6/montmorillonite nanocomposites. Polymer 42:9975CrossRefGoogle Scholar
  13. 13.
    Priya L, Jog JP (2002) Poly(vinylidene fluoride)/clay nanocomposites prepared by melt intercalation: crystallization and dynamic mechanical behavior studies. J Polym Sci Part B: Polym Phys 40:1682Google Scholar
  14. 14.
    Shah D, Maiti P, Gunn E, Schmidt DF, Jiang DD, Batt CA, Giannelis ER (2004) Dramatic enhancements in toughness of polyvinylidene fluoride nanocomposites via nanoclay-directed crystal structure and morphology. Adv Mater 16:1173CrossRefGoogle Scholar
  15. 15.
    Lincoln DM, Vaia RA, Krishnamoorti R (2004) Isothermal crystallization of nylon-6/montmorillonite nanocomposites. Macromolecules 37:4554CrossRefGoogle Scholar
  16. 16.
    Ito M, Mizuochi K, Kanamoto T (1998) Effects of crystalline forms on the deformation behaviour of nylon 6. Polymer 39:4593CrossRefGoogle Scholar
  17. 17.
    Li F, Hu K, Li JL, Zhao BY (2001) The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear 249:877CrossRefGoogle Scholar
  18. 18.
    Chen WX, Li F, Han G, Xia JB, Wang LY, Tu JP, Xu ZD (2003) Tribological behavior of carbon nanotube-filled PTFE composites. Tribol Lett 15:275CrossRefGoogle Scholar
  19. 19.
    Tseng CR, Wu SC, Wu JJ, Chang FC (2002) Crystallization behavior of syndiotactic polystyrene nanocomposites for melt- and cold-crystallizations. J Appl Polym Sci 86:2492CrossRefGoogle Scholar
  20. 20.
    Devaux E, Bourbigot S, El Achari A (2002) Crystallization behavior of PA-6 clay nanocomposite hybrid. J Appl Polym Sci 86:2416CrossRefGoogle Scholar
  21. 21.
    Wu HD, Tseng CR, Chang FC (2001) Chain conformation and crystallization behavior of the syndiotactic polystyrene nanocomposites studied using Fourier transform infrared analysis. Macromolecules 34:2992CrossRefGoogle Scholar
  22. 22.
    Carter CM (2001) Annual technical conference, vol 3. The Society of Plastics Engineers, Dallas, p 3210Google Scholar
  23. 23.
    Liu ZJ, Zhou PL, Yan DY (2004) Preparation and properties of nylon-1010/montmorillonite nanocomposites by melt intercalation. J Appl Polym Sci 91:1834CrossRefGoogle Scholar
  24. 24.
    Nam PH, Maiti P, Okamoto M, Kotaka T, Hasegawa N, Usuki A (2001) A hierarchical structure and properties of intercalated polypropylene/clay nanocomposites. Polymer 42:9633CrossRefGoogle Scholar
  25. 25.
    Fermeglia M, Pricl S (2007) Multiscale modeling for polymer systems of industrial interest. Prog Org Coat 58:187CrossRefGoogle Scholar
  26. 26.
    Fermeglia M, Ferrone M, Pricl S (2004) Estimation of the binding energy in random poly(butylene terephtalate-co-thiodiethylene terephtalate) copolyesters/clay nanocomposites via molecular simulation. Molec Simul 30:289CrossRefGoogle Scholar
  27. 27.
    Fermeglia M, Ferrone M, Pricl S (2003) Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy. Fluid Phase Equ 212:315CrossRefGoogle Scholar
  28. 28.
    Tanaka G, Goettler LA (2002) Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling. Polymer 43:541CrossRefGoogle Scholar
  29. 29.
    Toth R, Coslanich A, Ferrone M, Fermeglia M, Pricl S, Miertus S, Chiellini E (2004) Computer simulation of polypropylene/organoclay nanocomposites: characterization of atomic scale structure and prediction of binding energy. Polymer 45:8075CrossRefGoogle Scholar
  30. 30.
    Toth R, Ferrone M, Miertus S, Chiellini E, Fermeglia M, Pricl S (2006) Structure and energetics of biocompatible polymer nanocomposite systems: a molecular dynamics study. Biomacromolecules 7:1714CrossRefGoogle Scholar
  31. 31.
    Kuppa V, Menakanit S, Krishnamoorti R, Manias E (2003) Simulation insights on the structure of nanoscopically confined poly(ethylene oxide). J Polym Sci Part B: Polym Phys 41:3285Google Scholar
  32. 32.
    Hackett E, Manias E, Giannelis EP (2000) Computer simulation studies of PEO/layer silicate nanocomposites. Chem Mater 12:2161CrossRefGoogle Scholar
  33. 33.
    Smith JS, Bedrov D, Smith GD (2003) A molecular dynamics simulation study of nanoparticle interactions in a model polymer-nanoparticle composite. Compos Sci Technol 63:1599CrossRefGoogle Scholar
  34. 34.
    Woo E, Huh J, Jeong YG, Shin K (2007) From Homogeneous to Heterogeneous nucleation of chain molecules under nanoscopic cylindrical confinement. Phys Rev Lett 98:136103CrossRefGoogle Scholar
  35. 35.
    Wang H, Keum JK, Hiltner A, Baer E (2009) Confined crystallization of PEO in nanolayered films impacting structure and oxygen permeability. Macromolecules 42:7055CrossRefGoogle Scholar
  36. 36.
    Steinhart M, Goring P, Dernaika H, Prabhukaran M, Gosele U (2006) Coherent kinetic control over crystal orientation in macroscopic ensembles of polymer nanorods and nanotubes. Phys Rev Lett 97:027801CrossRefGoogle Scholar
  37. 37.
    Li Q, Simon SL (2008) Curing of bisphenol M dicyanate ester under nanoscale constraint. Macromolecules 41:1310CrossRefGoogle Scholar
  38. 38.
    Ho RM, Chiang YW, Lin CC, Huang BH (2005) Crystallization and melting behavior of poly(ε-caprolactone) under physical confinement. Macromolecules 38:4769CrossRefGoogle Scholar
  39. 39.
    Wang H, Keum JK, Hiltner A, Baer E, Freeman B, Rozanski A, Galeski A (2009) Confined crystallization of polyethylene oxide in nanolayer assemblies. Science 323:757CrossRefGoogle Scholar
  40. 40.
    Bansal A, Yang H, Li C, Cho K, Benicewicz BC, Kumar SK, Schadler LS (2005) Quantitative equivalence between polymer nanocomposites and thin polymer films. Nat Mater 4:693CrossRefGoogle Scholar
  41. 41.
    Chen C, Tolle TB (2004) Aerospace applications for epoxy layered-silicate nanocomposites. Dekker Encycl Nanosci Nanotechnol 1:45Google Scholar
  42. 42.
    Liu T, Tjiu WC, Tong Y, He C, Goh SS, Chung TS (2004) Morphology and fracture behavior of intercalated epoxy/clay nanocomposites. J Appl Polym Sci 94:1236CrossRefGoogle Scholar
  43. 43.
    Atkinson KE, Jones C (1996) A study of the interphase region in carbon fibre/epoxy composites using dynamic mechanical thermal analysis. J Adhes 56:247CrossRefGoogle Scholar
  44. 44.
    Zhou T, Gu M, Jin Y, Wang J (2005) Studying on the curing kinetics of a DGEBA/EMI-2,4/nano-sized carborundum system with two curing kinetic methods. Polymer 46:6174CrossRefGoogle Scholar
  45. 45.
    Lee TM (2006) Ma CCM. Nonaqueous synthesis of nanosilica in epoxy resin matrix and thermal properties of their cured nanocomposites. J Polym Sci, Part A: Polym Chem 44:757CrossRefGoogle Scholar
  46. 46.
    Sun Y, Zhang Z, Moon K-S, Wong CP (2004) Glass transition and relaxation behavior of epoxy nanocomposites. J Polym Sci, Part B: Polym Phys 42:3849CrossRefGoogle Scholar
  47. 47.
    Dinakaran K, Alagar M (2003) Preparation and characterization of epoxy-cyanate ester interpenetrating network matrices/organoclay nanocomposites. Polym Adv Technol 14:574CrossRefGoogle Scholar
  48. 48.
    Choi YK, Sugimoto KI, Song SM, Gotoh Y, Ohkoshi Y, Endo M (2005) Mechanical and physical properties of epoxy composites reinforced by vapor grown carbon nanofibers. Carbon 43:2199CrossRefGoogle Scholar
  49. 49.
    Ma PC, Kim JK, Tang BZ (2007) Effects of silane functionalization on the properties of carbon nanotube/epoxy nanocomposites. Compos Sci Technol 67:2965CrossRefGoogle Scholar
  50. 50.
    Zhang H, Tang LC, Zhang Z, Friedrich K, Sprenger S (2008) Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer 49:3816CrossRefGoogle Scholar
  51. 51.
    Lee A, Lichtenhan JD (1998) Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31:4970CrossRefGoogle Scholar
  52. 52.
    Kimata S, Sakurai T, Nozue Y, Kasahara T, Yamaguchi N, Karino T, Shibayama M, Kornfield JA (2007) Molecular basis of the shish-kebab morphology in polymer crystallization. Science 316:1014CrossRefGoogle Scholar
  53. 53.
    Li L, Li CY, Ni C (2006) Polymer crystallization-driven, periodic patterning on carbon nanotubes. J Am Chem Soc 128:1692CrossRefGoogle Scholar
  54. 54.
    Ning N, Fu S, Zhang W, Chen F, Wang K, Deng H, Zhang Q, Fu Q (2012) Realizing the enhancement of interfacial interaction in semicrystalline polymer/filler composites via interfacial crystallization. Prog Polym Sci 37:1425CrossRefGoogle Scholar
  55. 55.
    Dasari A, Yu ZZ, Mai Y-W (2007) Transcrystalline regions in the vicinity of nanofillers in polyamide-6. Macromolecules 40:123CrossRefGoogle Scholar
  56. 56.
    Yang JH, Wang CY, Wang K, Zhang Q, Chen F, Du RN, Fu Q (2009) Direct formation of nanohybrid shish-kebab in the injection molded bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 42:7016CrossRefGoogle Scholar
  57. 57.
    Ning NY, Luo F, Wang K, Du RN, Zhang Q, Chen F, Fu Q (2009) Interfacial enhancement by shish-calabash crystal structure in polypropylene/inorganic whisker composites. Polymer 50:3851CrossRefGoogle Scholar
  58. 58.
    Wang C, Liu CR (1999) Transcrystallization of polypropylene composites: nucleating ability of fibres. Polymer 40:289CrossRefGoogle Scholar
  59. 59.
    Varga J, Karger-Kocsis J (1996) Rules of supermolecular structure formation in sheared isotactic polypropylene melts. J Polym Sci Part B: Polym Phys 34:657Google Scholar
  60. 60.
    Wittmann JC, Lotz B (1990) Epitaxial crystallization of polymers on organic and polymeric substrates. Prog Polym Sci 15:909CrossRefGoogle Scholar
  61. 61.
    Koutsky JA, Walton AG, Baer E (1966) Epitaxial crystallization of homopolymers on single crystals of alkali halides. J Polym Sci Part A2 4:611Google Scholar
  62. 62.
    Chatterjee AM, Price FP, Newman S (1975) Heterogeneous nucleation of polymer crystallization from melt I—substrate induced morphologies. Bull Amer Phys Soc 20:341Google Scholar
  63. 63.
    Goldfarb L (1980) Transcrystallization of isotactic polypropylene. Makromolekulare Chemie: Macromol Chem Phys 181:1757CrossRefGoogle Scholar
  64. 64.
    Cho KW, Kim DW, Yoon S (2003) Effect of substrate surface energy on transcrystalline growth and its effect on interfacial adhesion of semicrystalline polymers. Macromolecules 36:7652CrossRefGoogle Scholar
  65. 65.
    Chen EJH, Hsiao BS (1992) The effects of transcrystalline interphase in advanced polymer composites. Polym Eng Sci 32:280CrossRefGoogle Scholar
  66. 66.
    Quan H, Li ZM, Yang MB, Huang R (2005) On transcrystallinity in semi-crystalline polymer composites. Compos Sci Technol 65:999CrossRefGoogle Scholar
  67. 67.
    Wang C, Liu CR (1999) Transcrystallization of polypropylene composites: nucleating ability of fibres. Polymer 40:289CrossRefGoogle Scholar
  68. 68.
    Bartczak Z, Argon AS, Cohen RE, Kowalewski T (1999) The morphology and orientation of polyethylene in films of sub-micron thickness crystallized in contact with calcite and rubber substrates. Polymer 40:2367CrossRefGoogle Scholar
  69. 69.
    Muratoglu OK, Argon AS, Cohen RE, Weinberg M (1995) Toughening mechanism of rubber-modified polyamides. Polymer 36:921CrossRefGoogle Scholar
  70. 70.
    Corte L, Beaume F, Leibler L (2005) Crystalline organization and toughening: example of polyamide-12. Polymer 46:2748CrossRefGoogle Scholar
  71. 71.
    Schultz JM (2001) Polymer crystallization: the development of crystalline order in thermoplastics. American Chemical Society, Oxford University Press, Washington, D.C.Google Scholar
  72. 72.
    Lagasse RR, Maxwell B (1976) An experimental study of the kinetics of polymer crystallization during shear flow. Polym Eng Sci 16:189CrossRefGoogle Scholar
  73. 73.
    Keller A (1955) Unusual orientation phenomena in polyethylene interpreted in terms of the morphology. J Polym Sci 15:31CrossRefGoogle Scholar
  74. 74.
    Kim M, Lee DH, Hoffmann B, Kressler J, Stoppelmann G (2001) Influence of nanofillers on the deformation process in layered silicate/polyamide-12 nanocomposites. Polymer 42:1095CrossRefGoogle Scholar
  75. 75.
    Sheng N, Boyce MC, Parks DM, Rutledge GC, Abes JI, Cohen RE (2004) Multiscale micromechanical modeling of polymer/clay nanocomposites and the effective clay particle. Polymer 45:487CrossRefGoogle Scholar
  76. 76.
    VanderHart DL, Asano A, Gilman JW (2001) Solid-state NMR investigation of paramagnetic nylon-6 clay nanocomposites. 2. Measurement of clay dispersion, crystal stratification, and stability of organic modifiers. Chem Mater 13:3796CrossRefGoogle Scholar
  77. 77.
    Brosse AC, Tence-Girault S, Piccione PM, Leibler L (2008) Effect of multi-walled carbon nanotubes on the lamellae morphology of polyamide-6. Polymer 49:4680CrossRefGoogle Scholar
  78. 78.
    Sano M, Sasaki DY, Kunitake T (1992) Polymerization-induced epitaxy: scanning tunneling microscopy of a hydrogen-bonded sheet of polyamide on graphite. Science 258:441CrossRefGoogle Scholar
  79. 79.
    Takenaka Y, Miyaji H, Hoshino A, Tracz A, Jeszka JK, Kucinska I (2004) Interface structure of epitaxial polyethylene crystal grown on HOPG and MoS2 substrates. Macromolecules 37:9667CrossRefGoogle Scholar
  80. 80.
    Miltner HE, Grossiord N, Lu K, Loos J, Koning CE, Mele BV (2008) Isotactic polypropylene/carbon nanotube composites prepared by latex technology. Thermal analysis of carbon nanotube-induced nucleation. Macromolecules 41:5753CrossRefGoogle Scholar
  81. 81.
    Haggenmueller R, Fischer JE, Winey KI (2006) Single wall carbon nanotube/polyethylene nanocomposites: nucleating and templating polyethylene crystallites. Macromolecules 39:2964CrossRefGoogle Scholar
  82. 82.
    Ning NY, Deng H, Luo F, Wang K, Zhang Q, Chen F, Fu Q (2011) Effect of whiskers nucleation ability and shearing function on the interfacial crystal morphology of polyethylene (PE)/raw whiskers composites. Compos B-Eng 42:631CrossRefGoogle Scholar
  83. 83.
    Zhang X, Loo LS (2009) Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites. Macromolecules 42:5196CrossRefGoogle Scholar
  84. 84.
    Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y, Kurauchi T, Kamigaito O (1993) Mechanical properties of nylon 6-clay hybrid. J Mater Res 8:1185CrossRefGoogle Scholar
  85. 85.
    Lu H, Nutt S (2003) Restricted relaxation in polymer nanocomposites near the glass transition. Macromolecules 36:4010CrossRefGoogle Scholar
  86. 86.
  87. 87.
    Li LY, Yang Y, Yang GL, Chen XM, Hsiao BS, Chu B, Spanier JE, Li CY (2006) Patterning polyethylene oligomers on carbon nanotubes using physical vapor deposition. Nano Lett 6:1007CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.College of Materials Science and EngineeringBeijing University of Chemical TechnologyBeijingChina
  3. 3.Centre for Advanced Materials TechnologyThe University of SydneySydneyAustralia

Personalised recommendations