Skip to main content

Applications and Outlook

  • Chapter
  • First Online:
  • 1064 Accesses

Part of the book series: Engineering Materials and Processes ((EMP))

Abstract

So far, in the previous chapters, we have only shown the potential of polymer nanocomposites to exhibit different functionalities. Herein, we will briefly review some examples of multi-functional polymer-based nanocomposites, which have been reported in the literature along with some commercial applications in different sectors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

BIS-GMA:

Bisphenol A glycidyl methacrylate

LCP:

Liquid crystalline polymer

PA:

Polyamide

PC:

Polycarbonate

PDMSe:

Poly (dimethylsiloxane) elastomer

PEA:

Polyethylacrylate

PEEK:

Polyetheretherketone

PEG:

Polyethylene glycol

PELA:

Block copolymer of lactic acid and polyethylene glycol

PET:

Polyethylene terepthalate

PHB:

Polyhydroxybutyrate

PHEMA:

Poly (hydroxyethyl methacrylate)

PGA:

Polyglycolic acid

PLDLA:

Poly (L-DL-lactide)

PLLA:

Poly (L-lactic acid)

PMA:

Polymethylacrylate

PP:

Polypropylene

PS:

Polysulfone

PTFE:

Polytetrafluoroethylene

PU:

Polyurethane

SR:

Silicone rubber

UHMWPE:

Ultrahigh molecular weight polyethylene

CF:

Carbon fibers

CNTs:

Carbon nanotubes

GF:

Glass fibers

GO:

Graphite oxide

HA:

Hydroxyapatite

KF:

Kevlar fibers

MMT:

Montmorillonite

MWCNTs:

Multi-walled carbon nanotubes

SEM:

Scanning electron microscopy

TEM:

Transmission electron microscopy

CFRP:

Carbon fiber-reinforced polymers

HRR:

Heat release rate

MLR:

Mass loss rate

References

  1. Dasari A, Yu ZZ, Mai Y-W (2009) Electrically conductive and super-tough polyamide-based nanocomposites. Polym 50:4112–4121

    Article  Google Scholar 

  2. Dasari A, Yu ZZ, Mai Y-W, Liu S (2009) Flame retardancy of highly filled polyamide 6/clay nanocomposites. Nanotechnol 18:445602

    Article  Google Scholar 

  3. Garces JM, Moll DJ, Bicerano J, Fibiger R, McLeod DG (2000) Polymeric nanocomposites for automotive applications. Adv Mater 12:1835–1839

    Article  Google Scholar 

  4. Njuguna B, Pielichowski K (2003) Polymer nanocomposites for aerospace applications: properties. Adv Eng Mater 5:769–778

    Article  Google Scholar 

  5. Okada A, Fukumori K, Usuki A, Kojima Y, Sato N, Kurauchi T (1991) Am Chem Soc Polym Prepr 32:540

    Google Scholar 

  6. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polym 49:3187–3204

    Article  Google Scholar 

  7. Pavlidou S, Papaspyrides CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198

    Article  Google Scholar 

  8. Choudalakis G, Gotsis AD (2004) Permeability of polymer/clay nanocomposites: a review. Eur Polym J 45:967–984

    Article  Google Scholar 

  9. Leaversuch RD (2001) Nanocomposites broaden roles in automotive, barrier packaging. Plast Technol. October Issue. http://www.ptonline.com/articles/nanocomposites-broaden-roles-in-automotive-barrier-packaging

  10. Goldberg HA, Feeney CA, Karim DP, Farrell M (2002) Elastomeric barrier coatings for sporting goods. Mater Res Soc Symp Proc 733E:T471–T476

    Google Scholar 

  11. Kanbara T, Yamamoto T, Tokuda K, Aoki K (1987) Porous and electrically conducting clay-carbon composite as electrode of electric double layer capacitor. Chem Lett 2173–2176

    Google Scholar 

  12. Koo JH (2006) Polymer nanocomposites—processing, characterization and applications. McGraw-Hill, New York, pp 235–261

    Google Scholar 

  13. Bebin P, Caravanier M, Galiano H (2006) Nafion (R)/clay-SO3H membrane for proton exchange membrane fuel cell application. J Membr Sci 278:35–42

    Article  Google Scholar 

  14. Thomassin JM, Pagnoulle C, Bizzari D, Caldarella G, Germain A, Jerome R (2006) Improvement of the barrier properties of Nafion (R) by fluoro-modified montmorillonite. Solid State Ionics 177:1137–1144

    Article  Google Scholar 

  15. Cuppoletti J (2011) Nanocomposites and polymers with analytical methods. Croatia, InTech, p 416

    Book  Google Scholar 

  16. Yin Y, Chang X (2010) Ocean engineering application of nanocomposites. In: Leng J, Lau AK-T (eds) Multifunctional polymer nanocomposites. CRC Press, pp 423–437

    Google Scholar 

  17. Yebra DM, Kiil S, Weinell CE, Dam-Johansen K (2006) Dissolution rate measurements of sea water soluble pigments for antifouling paints: ZnO. Prog Org Coat 56:327–337

    Article  Google Scholar 

  18. Dineshram R, Subasri R, Somaraju KRC, Jayaraj K, Vedaprakash L, Ratnam K (2009) Biofouling studies on nanoparticle-based metal oxide coatings on glass coupons exposed to marine environment. Colloids Surf, B 74:75–83

    Article  Google Scholar 

  19. Callow JA, Callow ME (2011) Trends in the development of environmentally friendly fouling-resistant marine coatings. Nat Comm 2:244 (1–10)

    Google Scholar 

  20. Wood JR, Zhao Q, Frogley MD, Meurs ER, Prins AD, Peijs T et al (2000) Carbon nanotubes: from molecular to macroscopic sensors. Phys Rev B 62:7571

    Article  Google Scholar 

  21. Zhao Q, Wood JR, Wagner HD (2001) Stress fields around defects and fibers in a polymer using carbon nanotubes as sensors. Appl Phys Lett 78:1748

    Article  Google Scholar 

  22. Thostenson ET, Chou TW (2006) Carbon nanotube networks: sensing of distributed strain and damage for life prediction and self healing. Adv Mater 18:2837–2841

    Article  Google Scholar 

  23. Nofar M, Hoa SV, Pugh MD (2009) Failure detection and monitoring in polymer matrix composites subjected to static and dynamic loads using carbon nanotube networks. Compos Sci Technol 69:1599–1606

    Article  Google Scholar 

  24. Li C, Thostenson E, Chou T-W (2010) Carbon-nanotube-based composites and damage sensing. In: Multifunctional polymer nanocomposites. CRC Press, pp 159–281

    Google Scholar 

  25. Li C, Chou T (2008) Modeling of damage sensing in fiber composites using carbon nanotube networks. Compos Sci Technol 68:3373–3379

    Article  Google Scholar 

  26. Wu C, Huang X, Wu X, Qian R, Jiang P (2013) Mechanically flexible and multifunctional polymer-based graphene foams for elastic conductors and oil-water separators. Adv Mater 25:5658–5662

    Article  Google Scholar 

  27. Du X, Liu H-Y, Mai Y-W (2016) Ultrafast synthesis of multifunctional N-doped graphene foam in an ethanol flame. ACS Nano 10:453–462

    Article  Google Scholar 

  28. Gao S-L, Mäder E (2015) Multifunctional interphases in polymer composites. In: Friedrich K, Breuer U (eds) Multifunctionality of polymer composites: challenges and new solutions. William Andrew Applied Science Publishers, Oxford, pp 338–362

    Chapter  Google Scholar 

  29. Lan X, Liu Y, Lv H, Wang X, Leng J, Du S (2009) Fiber reinforced shape-memory polymer composite and its application in a deployable hinge. Smart Mater Struct 18:024002

    Article  Google Scholar 

  30. Leng J, Lan X, Liu Y, Du S (2010) Multifunctional polymeric smart materials. In: Multifunctional polymer nanocomposites. CRC Press, pp 47–134

    Google Scholar 

  31. Zeng W, Chen SG, Zhao B, Rong MZ, Zhang MQ (2010) Gas sensing conductive polymer nanocomposites filled with carbon black nanoparticles. In: Tjong SC, Mai Y-W (eds) Physical properties and applications of polymer nanocomposites. Woodhead Publishing Ltd., Cambridge, pp 690–722

    Chapter  Google Scholar 

  32. Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017

    Article  Google Scholar 

  33. Jiang CY, Markutsya S, Pikus Y, Tsukruk VV (2004) Freely suspended nanocomposite membranes as highly sensitive sensors. Nat Mater 3:721–728

    Article  Google Scholar 

  34. Ramanavicius A, Ramanaviciene A, Malinauskas A (2006) Electrochemical sensors based on conducting polymer—polypyrrole. Electrochim Acta 51:6025–6037

    Article  Google Scholar 

  35. Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61:1189–1224

    Article  Google Scholar 

  36. Shahinpoor M, Kim KJ, Mojarrad M (2007) Engineering, industrial, and medical applications of ionic polymer metal nanocomposites. In: Artificial muscles. Taylor & Francis, Boca Raton, pp 329-370

    Google Scholar 

  37. Xie X-L, Du F-P, Mai Y-W (2010) Carbon nanotube nanocomposites for biomedical actuators. In: Tjong SC, Mai Y-W (eds) Physical properties and applications of polymer nanocomposites. Woodhead Publishing Ltd., Cambridge, pp 832–861

    Chapter  Google Scholar 

  38. Yamada T, Hayamizu Y, Yamamoto Y, Yomogida Y, Izadi-Najafabadi A, Futaba DN (2011) A stretchable carbon nanotube strain sensor for human-motion detection. Nat Nanotechnol 6:296–301

    Article  Google Scholar 

  39. Carbon Nanotube-Polymer Actuator Braille System Successfully Demonstrated by Japanese Research Team (2010) http://beforeitsnews.com/story/33/906/Carbon_Nanotube-Polymer_Actuator_Braille_System_Successfully_Demonstrated_by_Japanese_Research_Team.html

  40. Heydenreich R (1998) Cryotanks in future vehicles. Cryogenics 38:125–130

    Article  Google Scholar 

  41. Bansemir H, Haider O (1998) Fibre composite structures for space applications—recent and future developments. Cryogenics 38:51–59

    Article  Google Scholar 

  42. Yokozeki T, Ogasawara T, Ishikawa T (2006) Evaluation of gas leakage through composite laminates with multilayer matrix cracks: cracking angle effects. Compos Sci Technol 66:2815–2824

    Article  Google Scholar 

  43. Cott K (2001) The X-33 liquid hydrogen tank failure. http://www.tc.cornell.edu/Research/CMI/RLVsource/x33_failure.html

  44. Marshall Space Flight Center NASA (2000) Final report of the X-33 liquid hydrogen tank test investigation team

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravind Dasari .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Dasari, A., Yu, ZZ., Mai, YW. (2016). Applications and Outlook. In: Polymer Nanocomposites. Engineering Materials and Processes. Springer, London. https://doi.org/10.1007/978-1-4471-6809-6_12

Download citation

Publish with us

Policies and ethics