Skip to main content

Changing Project Structure to Mitigate Its Complexity

  • Chapter
  • First Online:
Managing Complex, High Risk Projects

Abstract

The complex structure of the project may cause the emergence of some local or global unexpected phenomena. This chapter highlights how interactions might play a critical role in the project behavior and change the understanding and thus the priorities that managers give to elements. An industrial application will be developed all along this chapter, based on a project of construction and implementation of a tramway in a city.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmad, N., Wynn, D. C., & Clarkson, J. (2009). An MDM-based approach to manage engineering change processes across domains of the design process. In International Design Structure Matrix Conference (pp. 299–312).

    Google Scholar 

  • Akao, Y. (1990). Quality function deployment. Cambridge, MA: Productivity Press.

    Google Scholar 

  • Bartolomei, J., Hastings, D., de Neufville, R., Rhodes, R. (2012). Engineering systems multiple domain matrix: an organizing framework for modeling large-scale complex systems. Systems Engineering, 15(1), 41–61.

    Article  Google Scholar 

  • Berge, C. (1958). Théorie des graphes et ses applications. Collection Universitaire de Mathématiques II, Paris: Dunod. English edition, Wiley.

    Google Scholar 

  • Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology, 2(1), 113–120.

    Article  Google Scholar 

  • Bondy, J. A. & Murty, U. S. R. (2008). Graph Theory. Springer. ISBN 978-1-84628-969-9.

    Google Scholar 

  • Borgatti, S. P. (2005). Centrality and network flow. Social Networks, 27(1), 55–71.

    Article  MathSciNet  Google Scholar 

  • Braha, D., & Bar-Yam, Y. (2004a). Information flow structure in large-scale product development organizational networks. Journal of Information Technology, 19(4), 244–253.

    Article  Google Scholar 

  • Braha, D., & Bar-Yam, Y. (2004b). Topology of large-scale engineering problem-solving networks. Physical Review E, 69(1), 016113.

    Article  Google Scholar 

  • Braha, D., & Bar-Yam, Y. (2007). The statistical mechanics of complex product development: Empirical and analytical results. Management Science, 53(7), 1127–1145.

    Article  MATH  Google Scholar 

  • Braha, D., Minai, A., & Bar-Yam, Y. (2006). Complex engineered systems: Science meets technology. Berlin: Springer.

    Google Scholar 

  • Browning, T. R. (2001). Applying the design structure matrix to system decomposition and integration problems: A review and new directions. IEEE Transactions on Engineering Management, 48(3), 292–306. Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=946528.

    Google Scholar 

  • Bru, R., Elsner, L., & Neumann, M. (1994). Convergence of infinite products of matrices and inner–outer iteration schemes. Electronic Transactions on Numerical Analysis, 2, 183–193.

    MathSciNet  MATH  Google Scholar 

  • Chen, S.-J., & Lin, L. (2003). Decomposition of interdependent task group for concurrent engineering. Computers & Industrial Engineering, 44(4), 633–650.

    Article  Google Scholar 

  • Clarkson, J., Simons, C., & Eckert, C. (2004). Predicting change propagation in complex design. Journal of Mechanical Design, 126.

    Google Scholar 

  • Danilovic, M., & Browning, T. R. T. R. (2007). Managing complex product development projects with Design structure matrices and domain mapping matrices. International Journal of Project Management, 25, 300–314.

    Article  Google Scholar 

  • Daubechies, I., & Lagarias, J. C. (1992). Sets of matrices all infinite products of which converge. Linear Algebra and its Applications, 161, 227–263.

    Article  MathSciNet  MATH  Google Scholar 

  • Deubzer, F., & Lindemann, U. (2009). MDM application to interrelate hierarchical layers of abstraction. In International Design Structure Matrix Conference (pp. 167–178).

    Google Scholar 

  • Dong, Q. (2002). Predicting and managing system interactions at early phase of the product development process. Cambridge, MA: Massachussets Institute of Technology.

    Google Scholar 

  • Eckert, C., Clarkson, P. J., & Zanker, W. (2004). Change and customisation in complex engineering domains. Research in Engineering Design, 15(1), 1–21.

    Article  Google Scholar 

  • Eckert, C. M., et al. (2006). Supporting change processes in design: Complexity, prediction and reliability. Reliability Engineering & System Safety, 91(12), 1521–1534.

    Article  Google Scholar 

  • Eppinger, S., et al. (1994). A model-based method for organizing tasks in product development. Research in Engineering Design, 6(1), 1–13.

    Article  Google Scholar 

  • Eppinger, S. D., & Browning, T. R. (2012). Design structure matrix methods and applications. MIT Press (MA).

    Google Scholar 

  • Exoo, G., & Harary, F. (1980). The smallest graphs with certain adjacency properties. Discrete Mathematics, 29(1), 25–32.

    Article  MathSciNet  MATH  Google Scholar 

  • Fan, C. -F., & Yu, Y. -C. (2004). BBN-based software project risk management. Journal of Systems and Software, 73(2), 193–203. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0164121203003364. Accessed 11 Oct 2012.

  • Fang, C., et al. (2012). Network theory-based analysis of risk interactions in large engineering projects. Reliability Engineering & System Safety, 106, 1–10.

    Article  Google Scholar 

  • Fang, C., et al. (2013). An integrated framework for risk response planning under resource constraints in large engineering projects. IEEE Transactions on Engineering Management (pp. 1–13). Available at: http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6464558.

  • Fang, C., & Marle, F. (2012a). A simulation-based risk network model for decision support in project risk management. Decision Support Systems, 52(3), 635–644.

    Google Scholar 

  • Fang, C., & Marle, F. (2012b). Dealing with project complexity by matrix-based propagation modelling for project risk analysis. Journal of Engineering Design, 1–18. Available at: http://www.tandfonline.com/doi/abs/10.1080/09544828.2012.720014. Accessed 11 Oct 2012.

  • Feng, W., et al. (2010). Dependency structure matrix modelling for stakeholder value networks. In Proceedings of the 12th International DSM Conference. Cambridge, UK.

    Google Scholar 

  • Floyd, R. (1962). Algorithm 97: shortest path. Communications of the ACM, 5.

    Google Scholar 

  • Freeman, L. (1977). Set of measures of centrality based on betweenness. Sociometry, 40, 35–41.

    Article  Google Scholar 

  • Frobenius, G. F. (1912). Über matrizen aus nicht negativen elementen. Königliche Akademie der Wissenschaften.

    Google Scholar 

  • Giffin, M. et al. (2009). Change propagation analysis in complex technical systems. Journal of Mechanical Design, 131.

    Google Scholar 

  • Gonzalez Ramirez, N. (2009). Contribution à l“ amélioration des processus à travers la mesure de la maturité de projet: application à l” industrie automobile.

    Google Scholar 

  • Gorbea, C. et al. (2008). Analysis of hybrid vehicle architectures using multiple domain matrices. In 10th International Design Structure Matrix Conference, DSM 08. Stockholm, Sweden.

    Google Scholar 

  • Guimera, R., & Amaral, L. (2004). Modeling the world-wide airport network. The European Physical Journal B-Condensed Matter and Complex Systems, 38(5).

    Google Scholar 

  • Gürtler, M. R., Kreimeyer, M., & Lindemann, U. (2009). Extending the active sum/passive sum measure to include boolean operators: a case study. In International Design Structure Matrix Conference (pp. 79–92).

    Google Scholar 

  • Harary, F. (1962). The determinant of the adjacency matrix of a graph. SIAM Review, 4(3), 202–210.

    Article  MathSciNet  MATH  Google Scholar 

  • Hashimshony, R., Shaviv, E., & Wachman, A. (1980). Transforming an adjacency matrix into a planar graph. Building and Environment, 15(4), 205–217.

    Article  Google Scholar 

  • Holtz, O. (2000). On convergence of infinite matrix products. Electronic Journal of Linear Algebra, 7, 178–181.

    Article  MathSciNet  MATH  Google Scholar 

  • Jaber, H., Marle, F., Vidal, L. A., Didiez, L. (2014). Reciprocal enrichment of two Multi-Domain Matrices to improve accuracy of vehicle development projects interdependencies modeling and analysis. In 16th International Dependency and Structure Modeling Conference. Paris, July 2014.

    Google Scholar 

  • Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39–43.

    Article  MATH  Google Scholar 

  • Keller, R., Eckert, C. M., & Clarkson, P. J. (2009). Using an engineering change methodology to support conceptual design. Journal of Engineering Design, 20(6), 571–587. Available at: http://www.tandfonline.com/doi/abs/10.1080/09544820802086988. Accessed 9 Oct 2012.

  • Kloss-Grote, B., & Moss, M. A. (2008). How to measure the effectiveness of risk management in engineering design projects? Presentation of RMPASS: a new method for assessing risk management performance and the impact of knowledge management—including a few results. Research in Engineering Design, 19(2–3), 71–100. Available at: http://www.springerlink.com/index/10.1007/s00163-008-0049-y. Accessed 11 Oct 2012.

  • Kreimeyer, M., et al. (2007). Team composition to enhance collaboration between embodiment design and simulation departments. In Proceedings of the International Conference on Engineering Design ICED’07. Paris, France: The Design Society.

    Google Scholar 

  • Kreimeyer, M. F. (2009). A Structural Measurement System for Engineering Design Processes.

    Google Scholar 

  • Ledet, W., & Himmelblau, D. (1970). Decomposition procedures for the solving of large scale systems. Advances in Chemical Engineering, 8, 185–254.

    Article  Google Scholar 

  • Lee, E., Park, Y., & Shin, J. G. (2009). Large engineering project risk management using a Bayesian belief network. Expert Systems with Applications, 36(3), 5880–5887. Available at: http://linkinghub.elsevier.com/retrieve/pii/S095741740800448X. Accessed 11 Oct 2012.

  • Lee, S.-L., Lucchese, R. R., & Chu, S. Y. (1987). Topological analysis of eigenvectors of the adjacency matrices in graph theory: The concept of internal connectivity. Chemical Physics Letters, 137(3), 279–284.

    Article  MathSciNet  Google Scholar 

  • Lindemann, U., Maurer, M., & Braun, T. (2009). Structural complexity management: An approach for the field of product design. Berlin, Germany: Springer.

    Book  Google Scholar 

  • Lorsch, J., & Lawrence, P. (1972). Managing group and intergroup relations. Homewood, IL.: Richard D. Irwin.

    Google Scholar 

  • Marle, F. (2002). Modèle d’information et méthodes pour aider à la décision en management de projet. Ph.D. thesis. Ecole Centrale Paris.

    Google Scholar 

  • Marle, F. (2014). A structured process to managing complex interactions between project risks. International Journal of Project Organisation and Management, 6(1/2), 4–32.

    Article  Google Scholar 

  • Marle, F., & Le Cardinal, J. (2010). Risk assessment method in project actor choice. International Journal Of Product Development, 12(1), 21–48.

    Article  Google Scholar 

  • Marle, F., Jankovic, M., & Turré, G. (2011). Correlating risk and innovation management in projects. In European Safety and Reliability Conference (ESREL).

    Google Scholar 

  • Maurer, M. (2007). Structural awareness in complex product design. Germany: Technische Universität München.

    Google Scholar 

  • McCord, K., & Eppinger, S. (1993). Managing the integration problem in concurrent engineering,

    Google Scholar 

  • Murthy, T. N. V. (1974). Relation between nth power of adjacency matrix and number of points of a complete graph. Current Science, 43(5), 133–134.

    Google Scholar 

  • Newman, M. (2010). Networks: An introduction. Oxford University Press.

    Google Scholar 

  • Page, L., et al. (1999). The pagerank citation ranking: Bringing order to the web.

    Google Scholar 

  • Perron, O. (1907). Zur theorie der matrices. Mathematische Annalen, 64(2), 248–263.

    Article  Google Scholar 

  • Pimmler, T., & Eppinger, S. (1994). Integration analysis of product decompositions. In Proceedings of the ASME International Design Engineering Technical Conferences (Design Theory & Methodology Conference). Minneapolis, MN.

    Google Scholar 

  • Ponstein, J. (1966). Self-avoiding paths and the adjacency matrix of a graph. SIAM Journal on Applied Mathematics, 14(3), 600–609.

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty, T. (1980). The Analytic Hierarchy Process: Planning, Priority Setting, Resource Allocation. New York: McGraw-Hill.

    Google Scholar 

  • Sharman, D., & Yassine, A. (2004). Characterizing complex product architecture. Systems Engineering, 7(1), 35–60.

    Article  Google Scholar 

  • Smith, R., & Eppinger, S. (1997). Identifying controlling features of engineering design iteration. Management Science. Management Science, 43(3), 276–293.

    Article  MATH  Google Scholar 

  • Sosa, M., Eppinger, S., & Rowles, C. (2004). The misalignment of product architecture and organizational structure in complex product development. Management Science, 50(12), 1674–1689.

    Article  Google Scholar 

  • Steward, D. V. (1981). The design structure system: a method for managing the design of complex systems. IEEE Transaction on Engineering Management, 28(3), 79–83.

    Google Scholar 

  • Tarjan, R. (1972). Depth-first search and linear graph algorithms. SIAM Journal on Computing, 1(2), 146–160.

    Article  MathSciNet  MATH  Google Scholar 

  • Thomason, M. G. (1977). Convergence of powers of a fuzzy matrix. Journal of Mathematical Analysis and Applications, 57(2), 476–480.

    Article  MathSciNet  MATH  Google Scholar 

  • Thompson, J. (1967). Organizations in action. New York: McGraw-Hill.

    Google Scholar 

  • Vidal, L. -A., & Marle, F. (2008). Understanding project complexity: Implications on project management. Kybernetes, 37(8), 1094–1110. Available at: http://www.emeraldinsight.com/10.1108/03684920810884928.

  • Warfield, J. (1973). Binary matrices in system modeling. IEEE Transactions on Systems, Man and Cybernetics, 3(5), 441–449.

    Article  MathSciNet  MATH  Google Scholar 

  • West, D. (2001). Introduction to graph theory. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Worren, N. (2012). Organisation design: Re-defining complex systems. Pearson.

    Google Scholar 

  • Yassine, A., et al. (2003). Information hiding in product development: The design churn effect. Research in Engineering Design, 14(3), 145–161.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Marle .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Marle, F., Vidal, LA. (2016). Changing Project Structure to Mitigate Its Complexity. In: Managing Complex, High Risk Projects. Springer, London. https://doi.org/10.1007/978-1-4471-6787-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6787-7_5

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6785-3

  • Online ISBN: 978-1-4471-6787-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics