Skip to main content

Assessing Complexity of Projects

  • Chapter
  • First Online:
Book cover Managing Complex, High Risk Projects

Abstract

This chapter proposes a list of project complexity factors which could be used as a checklist or can serve to measure complexity. Both actions can assist decision-making in complex project management. Practical case studies illustrate the application of proposals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors would like to thank Jean-Louis Giordano, former project manager at Renault, for its contribution to this retrospective study.

References

  • AFNOR. (2004). Management de projet, recueil de normes,

    Google Scholar 

  • AFNOR. (2007). Management de projet—AFNOR, AFNOR.

    Google Scholar 

  • Ahmad, N., & Laplante, P. A. (2007). Reasoning about software using metrics and expert opinion. Innovations in Systems and Software Engineering, 3(4), 229–235.

    Article  Google Scholar 

  • Ahmad, S., Mallick, D.N. & Schroeder, R.G. (2013). New Product Development: impact of Project Characteristics and Development Practices on Performance. Journal of Product Innovation Management, 30, pp. 331–348.

    Google Scholar 

  • Akileswaran, V., Hazen, G. B., & Morin, T. L. (1983). Complexity of the project sequencing problem. Operations Research, 31(4), 772–778.

    Article  MATH  Google Scholar 

  • Alhazmi, T., & McCaffer, R. (2000). Project procurement system selection model. American Society of Civil Engineers Journal, p. Paper No.18768–CO.

    Google Scholar 

  • Al-Shemmeri, T., Al-Kloub, B., & Pearman, A. (1997). Model choice in multicriteria decision aid. European Journal of Operational Research, 97(3), 550–560.

    Article  MATH  Google Scholar 

  • Austin, S., et al. (2002). Modelling and managing project complexity. International Journal of Project Management, 20(3), pp. 191–198. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0263786301000680.

    Google Scholar 

  • Bar-Yam, Y. (2004). Multiscale Complexity/Entropy. Advances in Complex Systems, 07, 47–63.

    Article  MathSciNet  MATH  Google Scholar 

  • Bea, J., & Lloveras, J. (2007). Multicriteria decision making applied to project outsourcing. In International Conference on Engineering Design, ICED-07, Paris, France.

    Google Scholar 

  • Bellut, S. (2002). Maîtriser les coûts d’un projet. AFNOR: Le management par la valeur.

    Google Scholar 

  • Bonan, B., et al. (2010). FabAct®: A decision-making tool for the anticipation of the preparation of anticancer drugs. Journal of evaluation in clinical practice, 16(6), 1129–1135.

    Article  Google Scholar 

  • Bosch-Rekveldt, M., et al. (2011). Grasping project complexity in large engineering projects: The TOE (Technical, Organizational and Environmental) framework. International Journal of Project Management, 29, 728–739.

    Article  Google Scholar 

  • Botha, R.J. (Nico). (2013). School principals’ abilities to manage time effectively: A gender study in selected South African schools. Gender and Behaviour, 11(2), pp. 5464–5473.

    Google Scholar 

  • Brans, J. P., & Vincke, P. (1985). A preference ranking organization method. Management Science, 31(6), 647–656.

    Article  MathSciNet  MATH  Google Scholar 

  • Brockmann, C., & Girmscheid, G. (2008). The inherent complexity of large scale engineering projects. Project perspectives, 29.

    Google Scholar 

  • Bryant, D. L., & Abkowitz, M. D. (2007). Estimation of chemical spill risk factors using a modified Delphi approach. Journal of Environmental Management, 85(1), 112–120.

    Article  Google Scholar 

  • Calinescu, A., et al. (1998). Applying and assessing two methods for measuring complexity in manufacturing. Journal of Operational Research Society, 49(7), 723–733.

    Article  MATH  Google Scholar 

  • Castejón-Limas, M. (2011). Effort estimates through project complexity. Annals of Operations Research, 186, 395–406.

    Article  Google Scholar 

  • Certa, A., Enea, M., & Lupo, T. (2013). ELECTRE III to dynamically support the decision maker about the periodic replacements configurations for a multi-component system. Decision Support Systems, 55(1), 126–134.

    Article  Google Scholar 

  • Charmes, A., & Cooper, W. (1961). Management models and industrial applications of linear programming (Vol. 1). New-York City: John Wiley.

    Google Scholar 

  • Chiu, Y.-J., & Chen, Y.-W. (2007). Using AHP in patent valuation. Mathematical and Computer Modelling, 46(7–8), 1054–1062.

    Article  MathSciNet  Google Scholar 

  • Chu, D., Strand, R., & Fjelland, R. (2003). Theories of complexity (C), pp. 19–30.

    Google Scholar 

  • Clarkson, P. J., Simons, C., & Eckert, C. M. (2004). Predicting change propagation in complex design. ASME Journal of Mechanical Design, 126(5), 765–797.

    Article  Google Scholar 

  • Cooke-Davies, T. (2007). Project complexity, p. 36.

    Google Scholar 

  • Corbett, L. M., Brockelsby, J., & Campbell-Hunt, C. (2002). Tackling industrial complexity, Cambridge, UK: Cambridge: Institute for Manufacturing.

    Google Scholar 

  • Dalkey, N., & Helmer, O. (1963). An Experimental Application of the Delphi Method to the use of experts”. Management Science, 9(3), 458–467.

    Article  Google Scholar 

  • Deason, J. (1984). A multi-objective decision support system for water project portfolio selection. In: Ph.D. Dissertation, University of Virginia.

    Google Scholar 

  • Dvir, D., et al. (1998). In search of project classification: a non-universal approach to project success factors. Research Policy, 27(9), pp. 915–935(21).

    Google Scholar 

  • Eckert, C. M., Earl, C. E., & Clarkson, P. J. (2005). Predictability of change in engineering: A complexity view, pp. 1–10.

    Google Scholar 

  • Edmonds, B. (1995). What is Complexity? - The philosophy of complexity per se with application to some examples in evolution., pp. 1–13.

    Google Scholar 

  • Edmonds, B. (1999). Syntactic Measures of Complexity. Department of Philisophy, PhD, p.245.

    Google Scholar 

  • Edwards, W. (1971). Social utilities - Engineering Economist, Summer Symposium Series 6.

    Google Scholar 

  • Faria, L., Rodrigues, C., & Santos, S. (2012). Management Competencies: A Gender Study With Portuguese Men And Women. ICERI2012 - 5th International Conference of Education (pp. 3680–3687). Spain: Research and Innovation. Madrid.

    Google Scholar 

  • Frizelle, G., & Woodcock, E. (1995). Measuring complexity as an aid to developing operational strategy. International Journal of Operations & Production Management, 15(5), 26–39.

    Article  Google Scholar 

  • Fumey, M. (2001). Méthode d’Evaluation des Risques Agrégés: application au choix des investissements de renouvellement d’installations. Thèse de l’institut national polytechnique de Toulouse.

    Google Scholar 

  • Gareis, R. (2000). Managing the project start. The Gower Handbook of Project Management.

    Google Scholar 

  • Geist, M. R. (2010). Using the Delphi method to engage stakeholders: A comparison of two studies. Evaluation and Program Planning, 33(2), 147–154.

    Article  Google Scholar 

  • Geraldi, J., Maylor, H., & Williams, T. (2011). Now, let’s make it really complex (complicated): A systematic review of the complexities of projects. International Journal of Operations & Production Management, 31(9), 966–990.

    Article  Google Scholar 

  • Gerdsri, N., & Kocaoglu, D. F. (2007). Applying the Analytic Hierarchy Process (AHP) to build a strategic framework for technology roadmapping. Mathematical and Computer Modelling, 46(7–8), 1071–1080.

    Article  Google Scholar 

  • Gershon, M. (1981). Model choice in multi-objective decision making in natural resource systems. In: Ph.D. Dissertation, University of Arizona.

    Google Scholar 

  • Gorghiu, L. M., et al. (2013). Delphi Study - A Comprehensive Method for Outlining Aspects and Approaches of Modern Science Education. Procedia - Social and Behavioral Sciences, 83, 535–541.

    Article  Google Scholar 

  • Gourc, D. (2006). Vers un modèle conceptuel du risque pour le pilotage et la conduite des activités de biens et de services. Propositions pour une conduite des projets et une gestion des risques intégrées. Institut National Polytechnique de Toulouse.

    Google Scholar 

  • Hadaya, P., Cassivi, L., & Chalabi, C. (2012). IT project management resources and capabilities: a Delphi study. International Journal of Managing Projects in Business, 5(2), 216–229.

    Article  Google Scholar 

  • He, Q., et al. (2014). Measuring the complexity of mega construction projects in China—A fuzzy analytic network process analysis. International Journal of Project Management, 33(3), 549–563.

    Article  Google Scholar 

  • Heylighen, F., Cilliers, P. & Gershenson, C. (2006). Complexity and Philosophy., p.21.

    Google Scholar 

  • Holder, R.D. (1990). Some comments on the analytic hierarchy process. Journal of Operational Research Society, 41(11), 1073–1076.

    Google Scholar 

  • Hu, Y.-C., & Chen, C.-J. (2011). A PROMETHEE-based classification method using concordance and discordance relations and its application to bankruptcy prediction. Information Sciences, 181(22), 4959–4968.

    Article  Google Scholar 

  • IPMA. (2006a). Evaluation of project management complexity for IPMA certification process on level B - Draft,

    Google Scholar 

  • IPMA. (2006b). IPMA Competence Baseline (ICB), Version 3.0, International Project Management Association.

    Google Scholar 

  • ISO. (2003). ISO 10006 - Quality Management Systems - Guidelines for quality management in projects. Switzerland: International Organization for Standardization.

    Google Scholar 

  • Ivan, I., & Sandu, A. (2008). Projects hierarchy based on duration and complexity. In 22nd IPMA World Conference. Roma, Italy.

    Google Scholar 

  • Jaafari, A. (2003). Project management in the age of complexity and change. Project Management Journal, 34(4), 47–57.

    Google Scholar 

  • Kaimann, R. A. (1974). Coefficient of network complexity.pdf. Management Science, 21(2), 172–177.

    Article  MATH  Google Scholar 

  • Kapsali, M., Roehrich, K. & Caldwell, N. (2013). The systemic contract: Mmeasuring how effective contract rules are in organizing complex projects. In EurOMA2013 Conference. Dublin, Ireland.

    Google Scholar 

  • Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value trade—offs. New York, NY.: John Wiley.

    MATH  Google Scholar 

  • Keil, M., Lee, H. K., & Deng, T. (2013). Understanding the most critical skills for managing IT projects: A Delphi study of IT project managers. Information & Management, 50(7), 398–414.

    Article  Google Scholar 

  • Kim, J., & Wilemon, D. (2009). An empirical investigation of complexity and its management in new product development. Technology Analysis & Strategic Management, 21(4), 547–564.

    Article  Google Scholar 

  • Ko, K. H. et al. (2005). Analysis of information complexity during product development. Volume 2: 31st Design Automation Conference, Parts A and B, pp. 719–727.

    Google Scholar 

  • Koivu, T. et al. (2004). Institutional complexity affecting the outcomes of global projects.

    Google Scholar 

  • Latva-Koivisto, A. M. (2001). Finding a complexity measure for business process models. Complexity, pp. 1–26.

    Google Scholar 

  • Laurikkala, H. et al. (2001). Reducing complexity of modelling in large delivery projects. In International Conference on Engineering Design, ICED’01. Glasgow, Scotland: Professional Engineering Publishing, Bury St Edmunds., pp. 165–172.

    Google Scholar 

  • Li, H., & Williams, T. J. (2002). Management of complexity in enterprise integration projects by the PERA methodology. Journal of Intelligent Manufacturing, 13, 417–427.

    Article  Google Scholar 

  • Liang, W. Y. (2003). The analytic hierarchy process in project evaluation: an R&D case study in Taiwan. Benchmarking: An International Journal, 10(5), 445–456.

    Article  Google Scholar 

  • Lindkvist, L. (2008). Project management: Exploring its adaptation properties. International Journal of Project Management, 26(1), 13–20.

    Article  Google Scholar 

  • Linstone, H., & Turoff, M. (2002). The Delphi method: techniques and applications—Edited by .,

    Google Scholar 

  • Liu, S., et al. (2010). Comparing senior executive and project manager perceptions of IT project risk: A Chinese Delphi study. Information Systems Journal, 20, 319–355.

    Article  Google Scholar 

  • Marle, F. (2002). Modèles d’information et méthodes pour aider à la prise de décision en management de projets. Ecole Centrale Paris.

    Google Scholar 

  • Marques, G., Gourc, D., & Lauras, M. (2011). Multi-criteria performance analysis for decision making in project management. International Journal of Project Management, 29(8), 1057–1069. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0263786310001419. Accessed February 28, 2013.

  • Mousseau, V., & Dias, L. (2004). Valued outranking relations in ELECTRE providing manageable disaggregation procedures. European Journal of Operational Research, 156(2), 467–482.

    Article  MATH  Google Scholar 

  • Mozaffari, M. M. (2012). Identifying the most critical project complexity factors using Delphi method: The Iranian construction industry. Management Science Letters, 2(8), 2945–2952.

    Article  MathSciNet  Google Scholar 

  • Nassar, K. M., & Hegab, M. Y. (2006). Developing a complexity measure for project schedules. Journal of Construction Engineering and Management, 132(June), 554–561.

    Article  Google Scholar 

  • Okoli, C., & Pawlowski, S. D. (2004). The Delphi method as a research tool: an example, design considerations and application. Information & Management, 42, 15–29.

    Article  Google Scholar 

  • Parreiras, R. O., & Vasconcelos, J. A. (2007). A multiplicative version of Promethee II applied to multiobjective optimization problems. European Journal of Operational Research, 180(2), 729–740.

    Article  MATH  Google Scholar 

  • Perera, B. A. K. S., Rameezdeen, Raufdeen Chileshe, N., & Reza Hosseini, M. (2014). Enhancing the effectiveness of risk management practices in Sri Lankan road construction projects: A Delphi approach. International Journal of Construction Management, 14(1), 1–14.

    Google Scholar 

  • Pitsis, T. S., et al. (2014). Governing projects under complexity: theory and practice in project management. International Journal of Project Management, 32(8), 1285–1290.

    Article  Google Scholar 

  • PMI. (2013). A Guide to the Project Management Body of Knowledge: PMBOK Guide (5th Ed.). Project Management Institute.

    Google Scholar 

  • Ramasesh, R. V., & Browning, T. R. (2014). A conceptual framework for tackling knowable unknown unknowns in project management. Journal of Operations Management, 32(4), 190–204.

    Article  Google Scholar 

  • Remington, K. (2011). Leading complex projects. Burlington, VT: Gower Publishing.

    Google Scholar 

  • Rodrigues, A., & Bowers, J. (1996). The role of system dynamics in project management. International Journal of Project Management, 14(4), 213–220.

    Article  Google Scholar 

  • Roy, B. (1968). Classement et choix en présence de points de vue multiples: la méthode ELECTRE. RIRO, 8, 57–75.

    Article  Google Scholar 

  • Roy, B. (1978). ELECTRE HI: Un algorithme de classement fondé sur une représentation floue des préférences en présence de critères multiples. Cahiers du CERO, 20, 3–24.

    MATH  Google Scholar 

  • Roy, B. (1985). Méthodologie multicritère d’aide a la décision, Paris, France: Economica.

    Google Scholar 

  • Saaty, T. (1977). A scaling method for priorities in hierarchical structures. Mathematical Journal of Psychology, 15, 234–281.

    Article  MathSciNet  MATH  Google Scholar 

  • Saaty, T. (1980). The analytic hierarchy process: Planning, priority setting, resource allocation. New York: McGraw-Hill.

    MATH  Google Scholar 

  • Saaty, T. L. (1981). The analytical hierarchy process. New York, NY: McGraw Hill.

    Google Scholar 

  • Saaty, R. W. (1987). The analytic hierarchy process-what and how it is used. Mathematical Modelling, 9(3), 161–176.

    Article  MathSciNet  MATH  Google Scholar 

  • Schmidt, R. K., et al. (2001). Identifying software project risks: An international Delphi study. Journal of Management Information Systems, 17(4), 5–36.

    Google Scholar 

  • Shafiei-Monfared, S., & Jenab, K. (2012). A novel approach for complexity measure analysis in design projects. Journal of Engineering Design, 23(3).

    Google Scholar 

  • Shannon, C. E. & Weaver, W. (1949). Mathematical Theory of Communication (1st ed.). University of Illinois Press.

    Google Scholar 

  • Shenhar, A. J., & Dvir, D. (2007). Reinventing project management—the diamond approach to successful growth and innovation. Boston: Harvard Business School Press.

    Google Scholar 

  • Sherwood Jones, B., & Anderson, P. (2005). Diversity as a determinant of system complexity.

    Google Scholar 

  • Simpson, G. W., & Cochran, J. K. (1987). An analytical approach to programming construction projects. Civil Engineering Systems, 4, 185–190.

    Article  Google Scholar 

  • Sinha, S., Thomson, A. I., & Kumar, B. (2001). A complexity index for the design process. International Conference on Engineering Design ICED’01 (pp. 157–163). Bury St Edmunds.: Professional Engineering Publishing.

    Google Scholar 

  • Skulmoski, G. J., Hartman, F. T., & Krahn, J. (2007). The Delphi method for graduate research. The Journal of Information Technology Education, 6.

    Google Scholar 

  • Steffens, W., Martinsuo, M., & Artto, K. (2007). Change decisions in product development projects. International Journal of Project Management, 25(7), 702–713.

    Article  Google Scholar 

  • Taslicali, A.K. & Ercan, S. (2006). The analytic hierarchy & the analytic network processes in multicriteria decision making: a comparative study. Journal of Aeronautics and Space Technologies, 2(4), pp. 55–65.

    Google Scholar 

  • Taylan, O., et al. (2014). Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Applied Soft Computing, 17, 105–116.

    Article  Google Scholar 

  • Tecle, A. (1988). A decision methodology for the resource utilization of rangeland watersheds. University of Arizona.

    Google Scholar 

  • Temperley, H. (1981). Graph theory and applications. Ellis Horwood Ltd.

    Google Scholar 

  • Thomas, J., & Mengel, T. (2008). Preparing project managers to deal with complexity—advanced project management education. International Journal of Project Management, 26, 304–315.

    Article  Google Scholar 

  • Toren, N., & Moore, D. (1998). The academic “hurdle race”: A case study. Higher Education, 35(3), 267–283.

    Article  Google Scholar 

  • Turner, R., Zolin, R., & Remington, K. (2009). Monitoring the performance of complex projects from multiple perspectives over multiple time frames. In Proceedings of the 9th International Research Network of Project Management Conference. Berlin, Germany: IRNOP.

    Google Scholar 

  • Van Marrewijk, A., et al. (2008). Managing public-private megaprojects: Paradoxes, complexity, and project design. International Journal of Project Management, 26, 591–600.

    Article  Google Scholar 

  • Varajão, J., & Cruz-Cunha, M. M. (2013). Using AHP and the IPMA competence baseline in the project managers selection process. International Journal of Production Research, 51(11).

    Google Scholar 

  • Vatalis, K. I., Manoliadis, O. G., & Mavridis, D. G. (2012). Project performance indicators as an innovative tool for identifying sustainability perspectives in green public procurement. Procedia Economics and Finance, 1, 401–410.

    Article  Google Scholar 

  • Vidal, L.-A., & Marle, F. (2008). Understanding project complexity: Implications on project management. Kybernetes, 37(8), 1094–1110. Available at: http://www.emeraldinsight.com/10.1108/03684920810884928.

  • Vidal, L.-A., Marle, F., & Bocquet, J.-C. (2008). Project complexity understanding and modeling to assist project management. In PMI Research Conference—Warsow.

    Google Scholar 

  • Vidal, L.-A., Marle, F., & Bocquet, J.-C. (2011). Using a Delphi process and the Analytic Hierarchy Process (AHP) to evaluate the complexity of projects. Expert Systems with Applications, 38(5), 5388–5405. Available at: http://linkinghub.elsevier.com/retrieve/pii/S0957417410011607. Accessed October 6, 2012.

  • Vidal, L., Marle, F., & Bocquet, J. (2013). Building up a project complexity framework using an international Delphi study. International Journal of Technology Management, 62(2/3/4), 251.

    Google Scholar 

  • Vidal, L.-A., et al. (2010). Applying AHP to select drugs to be produced by anticipation in a chemotherapy compounding unit. Expert Systems with Applications, 37(2), 1528–1534.

    Article  Google Scholar 

  • Williams, T. M. (1999). The need for new paradigms for complex projects. International Journal of Project Management, 17(5), 269–273.

    Article  Google Scholar 

  • Williams, T. (2002). Modelling complex projects (vol. 22, pp. 519–520).

    Google Scholar 

  • Zhang, K., Kluck, C., & Achari, G. (2009). A comparative approach for ranking contaminated sites based on the risk assessment paradigm using fuzzy PROMETHEE. Environmental Management, 44(5), 952–967.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franck Marle .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Marle, F., Vidal, LA. (2016). Assessing Complexity of Projects. In: Managing Complex, High Risk Projects. Springer, London. https://doi.org/10.1007/978-1-4471-6787-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6787-7_3

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6785-3

  • Online ISBN: 978-1-4471-6787-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics