Skip to main content

Methods for Iris Segmentation

  • Chapter
  • First Online:
Handbook of Iris Recognition

Abstract

Under ideal image acquisition conditions, the iris biometric has been observed to provide high recognition performance compared to other biometric traits. Such a performance is possible by accurately segmenting the iris region from the given ocular image. This chapter discusses the challenges associated with the segmentation process, along with some of the prominent iris segmentation techniques proposed in the literature. The methods are presented according to their suitability for segmenting iris images acquired under different wavelengths of illumination. Furthermore, methods to refine and evaluate the output of the iris segmentation routine are presented. The goal of this chapter is to provide a brief overview of the progress made in iris segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The term “iris boundaries” is used in this chapter to collectively refer to both the pupillary and limbus boundaries.

  2. 2.

    This is true for images obtained in the near-infrared spectrum.

  3. 3.

    Distance between the user and the sensor.

  4. 4.

    The process of generating a noise mask, and the subsequent schemes for iris normalization and matching are very similar in a majority of iris recognition algorithms. However, as the chapter focuses only on iris segmentation, these details are not discussed. The reader is directed to the original publication by Daugman [9] for further information.

  5. 5.

    The subscript t denotes the iteration number.

References

  1. A. Abhyankar, S. Schuckers, Active shape models for effective iris segmentation, in Proceedings of SPIE Conference on Biometric Technology for Human Identification III, vol. 6202, Apr 2006, pp. 1–62020

    Google Scholar 

  2. P. Almeida, A Knowledge-based approach to the Iris segmentation problem. Image Vis. Comput. 28(2), 238–245 (2010)

    Article  MathSciNet  Google Scholar 

  3. S. Baker et al., Degradation of iris recognition performance due to non-cosmetic prescription contact lenses. Comput. Vis. Image Underst. (2010)

    Google Scholar 

  4. V. Boddeti, B.V.K.V. Kumar, K. Ramkumar, Improved iris segmentation based on local texture statistics, in Asilomar Conference on Signals, Systems and Computers (ASILOMAR) Nov 2011, pp. 2147–2151

    Google Scholar 

  5. W.W. Boles, B. Boashash, A human identification technique using images of the iris and wavelet transform. IEEE Trans. Signal Process. 46(4), 1185–1188 (1998)

    Article  Google Scholar 

  6. C. Boyce et al., in Multispectral Iris Analysis: A Preliminary Study, Computer Vision and Pattern Recognition Workshop on Biometrics

    Google Scholar 

  7. Y. Chen, S. Dass, A. Jain, Fingerprint quality indices for predicting authentication performance, in Procedings of the Audioand Video-based Biometric Person Authentication (AVBPA), July 2005, pp. 160–170

    Google Scholar 

  8. D.M.I.R. Company (2015)

    Google Scholar 

  9. J. Daugman, How iris recognition works, in vol. 1 (2002)

    Google Scholar 

  10. J. Daugman, New methods in iris recognition. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 37(5), 1167–1175 (2007)

    Article  Google Scholar 

  11. J. Daugman, The importance of being random. Pattern Recognit. 36(2), 279–291 (2003)

    Article  Google Scholar 

  12. J.G. Daugman, High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1160 (1993)

    Article  Google Scholar 

  13. J. Daugman, How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)

    Article  Google Scholar 

  14. V. Dorairaj, N.A. Schmid, G. Fahmy, Performance evaluation of iris based recognition system implementing PCA and ICA encoding techniques, in Proceedings of SPIE Conference on Biometric Technology for Human Identification III, April 2005

    Google Scholar 

  15. Y. Du, C. Belcher, Z. Zhou, Scale invariant Gabor descriptor-based noncooperative iris recognition. EURASIP J. Adv. Signal Process. 2010 (2010)

    Google Scholar 

  16. M. Frucci, M. Nappi, D. Riccio, Watershed based iris segmentation, in Lecture Notes in Computer Science (Springer, Berlin, 2013), pp. 204–212

    Google Scholar 

  17. Z. He et al., Boosting ordinal features for accurate and fast iris recognition, in IEEE Conference on Computer Vision and Pattern Recognition (2008), pp. 1–8

    Google Scholar 

  18. X. Hu, V. Pauca, R. Plemmons, Iterative directional ray based iris segmentation for challenging periocular images, in Biometric Recognition, Lecture Notes in Computer Science, vol. 7098 (Springer, Berlin, 2011), pp. 91–99

    Google Scholar 

  19. J. Huang et al., A new iris segmentation method for recognition. in Proceedings of the 17th International Conference on Pattern Recognition (ICPR), vol. 3, Aug 2004, pp. 23–26

    Google Scholar 

  20. J. Huang et al., Iris model based on local orientation description, in Proceedings of Asian Conference on Computer Vision, Apr 2004, pp. 954–959

    Google Scholar 

  21. J. Illingworth, J. Kittler, A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)

    Google Scholar 

  22. D. Jeong et al., A new iris segmentation method for non-ideal iris images. Image Vis. Comput. 28(2), 254–260 (2010)

    Article  Google Scholar 

  23. R. Jillela, Techniques for Ocular Biometric Recognition under Non-ideal Conditions. West Virginia University: Ph.D. Dissertation (2013)

    Google Scholar 

  24. R. Jillela, A. Ross, Segmenting iris images in the visible spectrum with applications in mobile biometrics. Pattern Recognit. Lett. 57, 4–16 (2015)

    Article  Google Scholar 

  25. N.D. Kalka et al., Proceedings of the SPIE conference on biometric technologies for human identification III, in Image Quality Assessment for Iris Biometric (2006), pp. 1–11

    Google Scholar 

  26. N. Kalka, N. Bartlow, B. Cukic, An automated method for predicting iris segmentation failures, in Sept 2009, pp. 1–8

    Google Scholar 

  27. R. Labati, F. Scotti, Noisy iris segmentation with boundary regularization and reflections removal. Image Vis. Comput. (IVC) 28(2), 270–277 (2010)

    Article  Google Scholar 

  28. P. Li et al., Robust and accurate iris segmentation in very noisy iris images. Image Vis. Comput. 28(2), 246–253 (2010)

    Article  Google Scholar 

  29. S. Lim et al., Efficient iris recognition through improvement of feature vector and classifier. J. Electron. Telecommun. Res. Inst. 33(2), 61–70 (2001)

    Google Scholar 

  30. X. Liu, K. Bowyer, P.J. Flynn, Experiments with an improved iris segmentation algorithm, in Oct 2005, pp. 118–123

    Google Scholar 

  31. L. Ma, Y. Wang, T. Tan, Iris recognition using circular symmetric filters, in Proceedings of the 16th International Conference on Pattern Recognition (ICPR), vol. 2, Aug 2002, pp. 805–808

    Google Scholar 

  32. L. Ma et al., Efficient iris recognition by characterizing key local variations. IEEE Trans. Image Process. 13(6), 739–750 (2004)

    Article  Google Scholar 

  33. L. Masek, P. Kovesi, MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. Tech. rep. The School of Computer Science and Software Engineering, The University of Western Australia (2003)

    Google Scholar 

  34. J. Matey et al., Iris on the move: acquisition of images for iris recognition in less constrained environments. Proc. IEEE 94(11), 1936–1947 (2006)

    Article  Google Scholar 

  35. M. Negin et al., An iris biometric system for public and personal use. Computer 33(2), 70–75 (2000)

    Article  Google Scholar 

  36. M. Oroz, E. Faure, J. Angulo, Robust iris segmentation on uncalibrated noisy images using mathematical morphology. Image Vis. Comput. 28(2), 278–284 (2010)

    Article  Google Scholar 

  37. H. Proenca, Iris recognition: a method to segment visible wavelength iris images acquired on-the-move and at-a-distance, in ISVC 2008: 4th International Symposium on Visual Computing, vol. 1, Dec 2008, pp. 731–742

    Google Scholar 

  38. H. Proenca, Iris recognition: on the segmentation of degraded images acquired in the visible wavelength. IEEE Trans. Pattern Anal. Mach. Intell. 32(8), 1502–1516 (2010)

    Article  Google Scholar 

  39. H. Proenca, G. Santos, Fusing color and shape descriptors in the recognition of degraded iris images acquired at visible wavelengths. Comput. Vis. Image Underst. 116(2), 167–178 (2012)

    Article  Google Scholar 

  40. S.J. Pundlik, D.L. Woodard, S.T. Birchfield, Non-ideal iris segmentation using graph cuts, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, June 2008, pp. 1–6

    Google Scholar 

  41. A. Raffei et al., Feature extraction for different distances of visible reflection iris using multiscale sparse representation of local radon transform. Pattern Recognit. 46(10), 2622–2633 (2013)

    Article  Google Scholar 

  42. K. Roy, P. Bhattacharya, Variational level set method and game theory applied for nonideal iris recognition, in Proceedings of the International Conference on Image Processing (ICIP) (2009), pp. 2721–2724

    Google Scholar 

  43. K. Roy, P. Bhattacharya, C.Y. Suen, Iris segmentation using variational level set method. Optics Lasers Eng. 49(4), 578–588 (2011)

    Article  MathSciNet  Google Scholar 

  44. W. Sankowski et al., Reliable algorithm for iris segmentation in eye image. Image Vis. Comput. 28(2), 231–237 (2010)

    Article  MathSciNet  Google Scholar 

  45. S. Shah, A. Ross, Iris segmentation using geodesic active contours. IEEE Trans. Inf. Forensics Secur. (TIFS) 4(4), 824–836 (2009)

    Article  Google Scholar 

  46. C. Tan, A. Kumar, Automated segmentation of iris images using visible wavelength face images, in IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), June 2011, pp. 9–14

    Google Scholar 

  47. T. Tan, Z. He, Z. Sun, Efficient and robust segmentation of noisy iris images for non-cooperative iris recognition. Image Vis. Comput. 28(2), 223–230 (2010)

    Article  Google Scholar 

  48. J. Thornton, M. Savvides, B.V.K.V. Kumar, Robust iris recognition using advanced correlation techniques, in Conference on Image Analysis and Recognition (ICIAR), vol. 3656, Sept 2005, pp. 1098–1105

    Google Scholar 

  49. A. Uhl, P. Wild, Multi-stage visible wavelength and near infrared iris segmentation framework, in Image Analysis and Recognition, Lecture Notes in Computer Science, vol. 7325 (2012), pp. 1–10

    Google Scholar 

  50. R. Wildes, Iris recognition: an emerging biometric technology. Proc. IEEE 85(9), 1348–1363 (1997)

    Article  Google Scholar 

  51. R. Wildes et al., A system for automated iris recognition, in Proceedings of the Second IEEE Workshop on Applications of Computer Vision, Dec 1994, pp. 121–128

    Google Scholar 

  52. X. Yuan, P. Shi, Iris feature extraction using 2D phase congruency, in Third International Conference on Information Technology and Applications (ICITA), vol. 33, July 2005, pp. 437–441

    Google Scholar 

  53. D. Zhang, D. Monro, S. Rakshit, Eyelash removal method for human iris recognition, in ICIP06 (2006), pp. 285–288

    Google Scholar 

  54. J. Zuo, N. Kalka, N. Schmid, A robust IRIS segmentation procedure for unconstrained subject presentation, in Aug 2006, pp. 1–6

    Google Scholar 

  55. J. Zuo, N. Schmid, On a methodology for robust segmentation of nonideal iris images. IEEE Trans. Syst. Man Cybern. Part B: Cybern. 40(3), 703–718 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun A. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Jillela, R., Ross, A.A. (2016). Methods for Iris Segmentation. In: Bowyer, K., Burge, M. (eds) Handbook of Iris Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6784-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6784-6_7

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6782-2

  • Online ISBN: 978-1-4471-6784-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics