Skip to main content

A Theoretical Model for Describing Iris Dynamics

  • Chapter
  • First Online:
Handbook of Iris Recognition

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

We present a theoretical approach using what we know about tissue dynamics to explore the nonlinear dynamics of iris deformation. Current iris recognition algorithms assume a simple transformation to approximate the deformation of the iris tissue. Furthermore, current research work on iris deformation does not take into account the mechanical properties of the iris tissue nor the cause of deformation from the iris muscle activity. By looking at the tissue dynamics, we are able to gain a more comprehensive understanding of this deformation process. The results of this research work can potentially be leveraged into existing iris recognition systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Antman, Nonlinear Problems of Elasticity (1994)

    Google Scholar 

  2. W.F. Carroll, A Primer for Finite Elements in Elastic Structures (Wiley, 1999)

    Google Scholar 

  3. J. Daugman, High Confidence Visual Recognition of Persons (1993), pp. 1148–1161

    Google Scholar 

  4. C.J. Ellis, The pupillary light reflex in normal subjects. Br. J. Opthamol. 65(11), 754–759 (1981)

    Article  Google Scholar 

  5. Y.C. Fung, Biomechanics (Springer, 1997)

    Google Scholar 

  6. Y.C. Fung, A First Course in Continuum Mechanics (Prentice Hall, 1994)

    Google Scholar 

  7. D. Henwood, J. Bonet, Finite Elements: A Gentle Introduction (1996)

    Google Scholar 

  8. K. Hollingsworth, K.W. Bowyer, P.J. Flynn, Pupil dilation degrades iris biometric performance. Comput. Vis. Image Underst. 113(1), 150–157 (2009)

    Article  Google Scholar 

  9. A.K. Jain, P.J. Flynn, A. Ross, Handbook of Biometrics (2007)

    Google Scholar 

  10. Y. Lei et al., Experimental research on the mechanical properties of porcine iris. Clin. Biomech. 23, 83–87 (2008)

    Article  Google Scholar 

  11. N. Link, L. Stark, Latency of the pupillary response. IEEE Trans. Bio. Eng. 35(3), 214–218 (1988)

    Article  Google Scholar 

  12. A. Longtin, J.G. Milton, Modelling autonomous oscillations in the human pupil light reflex using nonlinear delay-differential equations. Bull. Math. Biol. 51(5), 605–624 (1989)

    Article  MATH  Google Scholar 

  13. P. Moon, D. Spencer, On the Stiles-Crawford Effect, vol. 34 (1944), pp. 319–329

    Google Scholar 

  14. A. Palazotto, Nonlinear Analysis of Shell Structures (AIAA Education Services, 1992)

    Google Scholar 

  15. V. Pamploma, Photorealistic models for pupil light reflex and iridal pattern deformation (2008)

    Google Scholar 

  16. H. Protter, H.F. Weinberger, Maximum Principles in Differential Equations (Springer-Verlag, 1984)

    Google Scholar 

  17. J.N. Reddy (Oxford University Press, 2004)

    Google Scholar 

  18. H. Rohen, Der Bau der Regenbogenhaut beim Menschen und einigen Säugern. Gegenbaur Morphol. 91, 140–181 (1951)

    Google Scholar 

  19. A. Ross, Iris Recognition: The Path Forward (2010), pp. 30–35

    Google Scholar 

  20. L. Stark, The Pupil As a Paradigm for Neurological Control, vol. 31 (1984), pp. 1925–1939

    Google Scholar 

  21. J. Thornton, M. Savvides, B.V.V. Kumar, Bayesian approach to deformed pattern matching of iris images. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 596–606 (2007)

    Article  Google Scholar 

  22. S. Usui, L. Stark, A Model for Nonlinear Stochastic Behavior of the Pupil (1982), pp. 13–21

    Google Scholar 

  23. Z. Wei, T. Tan, Z. Sun, Nonlinear iris deformation correction based on gaussian model, in Advances in Biometrics. Lecture Notes in Computer Science, vol. 4642, 2007, pp. 780–789

    Google Scholar 

  24. H.J. Wyatt, A ‘minimum-wear-and-tear’ meshwork for the iris. Vis. Res. 40, 2167–2176 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2007-ST-104-000006. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security. Arun Ross was supported by US National Science Foundation CAREER Grant No. IIS 0642554

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Scott Kulp , Isom Herron or Arun A. Ross .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Clark, A., Kulp, S., Herron, I., Ross, A.A. (2016). A Theoretical Model for Describing Iris Dynamics. In: Bowyer, K., Burge, M. (eds) Handbook of Iris Recognition. Advances in Computer Vision and Pattern Recognition. Springer, London. https://doi.org/10.1007/978-1-4471-6784-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6784-6_18

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6782-2

  • Online ISBN: 978-1-4471-6784-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics