Turbine Fatigue Reliability and Life Assessment Using Ultrasonic Inspection: Data Acquisition, Interpretation, and Probabilistic Modeling

  • Xuefei Guan
  • El Mahjoub Rasselkorde
  • Waheed A. Abbasi
  • S. Kevin Zhou
Part of the Springer Series in Reliability Engineering book series (RELIABILITY)


A general method and procedure of fatigue reliability and life assessment of steam turbines using ultrasonic inspections is presented in this chapter. The basic structure of an automated ultrasonic inspection system using in turbine surface engineering is briefly introduced. Using the inspection information, a probabilistic model is developed to quantify uncertainties from flaw sizing and model parameters. The uncertainty from flaw sizing is described using a probability of detection model which is based on a classical log-linear model coupling the actual flaw size with the ultrasonic inspection reported size. The uncertainty from model parameters is characterized using Bayesian parameter estimation from fatigue testing data. A steam turbine rotor example with realistic ultrasonic inspection data is presented to demonstrate the overall method. Calculations and interpretations of assessment results based on risk recommendations for industrial applications are also discussed.


Monte Carlo Nuclear Regulatory Commission Ultrasonic Inspection Indication Point Fatigue Reliability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Abbasi, W., & Metala, M. (2008). Recent advances in NDE technologies for turbines and generators. In 17th World Conference on Nondestructive Testing.Google Scholar
  2. Achenbach, J. (2000). Quantitative nondestructive evaluation. International Journal of Solids and Structures, 37(1), 13–27.MathSciNetCrossRefMATHGoogle Scholar
  3. Adams, R., & Bischof, L. (1994). Seeded region growing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 16(6), 641–647.CrossRefGoogle Scholar
  4. Berens, A. P. (1989). NDE reliability data analysis. In: ASM Handbook (vol. 17, 9th edn., pp. 689–701). ASM International.Google Scholar
  5. Billinton, R., & Allan, R. (1983). Reliability evaluation of engineering systems: concepts and techniques. New York: Plenum Press.CrossRefMATHGoogle Scholar
  6. Deng, W., Shark, L., Matuszewski, B., Smith, J., & Cavaccini, G. (2004). CAD model-based inspection and visualisation for 3D non-destructive testing of complex aerostructures. Insight-Non-Destructive Testing and Condition Monitoring, 46(3), 157–161.CrossRefGoogle Scholar
  7. Drinkwater, B., & Wilcox, P. (2006). Ultrasonic arrays for non-destructive evaluation: a review. NDT and E International, 39(7), 525–541.CrossRefGoogle Scholar
  8. Freudenthal, A. (1977). The scatter factor in the reliability assessment of aircraft structures. Journal of aircraft, 14(2), 202–208.CrossRefGoogle Scholar
  9. Geng, R. (2006). Modern acoustic emission technique and its application in aviation industry. Ultrasonics, 44, e1025–e1029.CrossRefGoogle Scholar
  10. Georgiou, G. (2006). Probability of Detection (POD) curves: derivation, applications and limitations. Technical Report 454, Jacobi Consulting Limited, London, UK.Google Scholar
  11. Guan, X., Zhang, J., Kadau, K., & Zhou, S. K. (2013). Probabilistic fatigue life prediction using ultrasonic inspection data considering equivalent initial flaw size uncertainty. In D. O. Thompson, & D. E. Chimenti (Eds.), AIP Conference Proceedings (vol. 1511, pp. 620–627). AIP.Google Scholar
  12. Guan, X., Zhang, J., Rasselkorde, E. M., Abbasi, W. A., & Kevin Zhou, S. (2014). Material damage diagnosis and characterization for turbine rotors using three-dimensional adaptive ultrasonic NDE data reconstruction techniques. Ultrasonics, 54(2), 516–525.CrossRefGoogle Scholar
  13. Kern, T., Ewald, J., & Maile, K. (1998). Evaluation of NDT-signals for use in the fracture mechanics safety analysis. Materials at High Temperatures, 15(2), 107–110.CrossRefGoogle Scholar
  14. Krautkrämer, J. (1959). Determination of the size of defects by the ultrasonic impulse echo method. British Journal of Applied Physics, 10(6), 240–245.CrossRefGoogle Scholar
  15. Rubinstein, R., & Kroese, D. (2007). Simulation and the Monte Carlo method (vol. 707). Wiley-interscience.Google Scholar
  16. Schneider, C., & Rudlin, J. (2004). Review of statistical methods used in quantifying NDT reliability. Insight-Non-Destructive Testing and Condition Monitoring, 46(2), 77–79.CrossRefGoogle Scholar
  17. Schwant, R., & Timo, D. (1985). Life assessment of general electric large steam turbine rotors. In Life assessment and improvement of turbo-generator rotors for fossil plants (pp. 1–8). New York: Pergamon Press.Google Scholar
  18. Shih, T., & Clarke, G. (1979). Effects of temperature and frequency on the fatigue crack growth rate properties of a 1950 vintage CrMoV rotor material. In Fracture Mechanics: Proceedings of the Eleventh National Symposium on Fracture Mechanics (vol. 700, p. 125). ASTM International.Google Scholar
  19. Simola, K., & Pulkkinen, U. (1998). Models for non-destructive inspection data. Reliability Engineering & System Safety, 60(1), 1–12.CrossRefGoogle Scholar
  20. Sposito, G., Ward, C., Cawley, P., Nagy, P., & Scruby, C. (2010). A review of non-destructive techniques for the detection of creep damage in power plant steels. NDT and E International, 43(7), 555–567.CrossRefGoogle Scholar
  21. Tang, W. (1973). Probabilistic updating of flaw information(flaw prediction and control in welds). Journal of Testing and Evaluation, 1, 459–467.CrossRefGoogle Scholar
  22. U.S. Energy Information Administration. (2013). Annual energy outlook 2013. Retrieved from
  23. U.S. Nuclear Regulatory Commission. (1987). Standard review plan for the review of safety analysis reports for nuclear power plants, LWR edn. Washington, D.C.: US Nuclear Regulatory Commission, Office of Nuclear Reactor Regulation.Google Scholar
  24. Zheng, R., & Ellingwood, B. (1998). Role of non-destructive evaluation in time-dependent reliability analysis. Structural Safety, 20(4), 325–339.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag London 2016

Authors and Affiliations

  • Xuefei Guan
    • 1
  • El Mahjoub Rasselkorde
    • 2
  • Waheed A. Abbasi
    • 2
  • S. Kevin Zhou
    • 1
  1. 1.Siemens Corporation, Corporate TechnologyPrincetonUSA
  2. 2.Siemens Energy, IncPittsburghUSA

Personalised recommendations