Skip to main content

Implications

  • Chapter
  • First Online:
Fundamentals of Neuromechanics

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 8))

  • 2647 Accesses

Abstract

This book is deliberately a short introduction to the mathematical and anatomical foundations of neuromechanics. My hope is that you will take these concepts and challenge, modify, extend, and leverage them to advance the science of neuromuscular control and its related areas, such as robotics, musculoskeletal modeling, computational neuroscience, rehabilitation, and evolutionary biology. Having established a common language, conceptual framework, and computational repertoire, I discuss several implications of this neuromechanical perspective. My intent is that my presentation of several issues, research directions, tenets, and debates, however brief, will inspire and encourage you in your research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Very rarely do we find 2 muscles with identical lines of action and functional capabilities. I can think of the extensor indicis proprius and the slip of the extensor digitorum communis to the index finger as a potential example because they share the same tendon of insertion. But given the lack of strict independence of the muscle fibers of the latter muscle, perhaps the former muscle is needed to enforce functional independence of the index finger.

  2. 2.

    Model predictive control, or MPC, is a computationally intensive approach that solves multiple versions of the problem for a short time horizon into the future at each time step. It then uses cost and value functions to pick from among the multiple, most successful branches to assemble families of acceptable full trajectories to solve the problem.

  3. 3.

    In areas such as numerical analysis, optimization, sampling, combinatorics, machine learning, data mining, etc., as the dimensionality of the variables increases, the volume of the space increases so fast that available data become sparse. Thus the amount of data needed to obtain statistically sound and reliable results often grows exponentially with the dimensionality, rendering the problem impractical.

References

  1. N.A. Bernstein, The Co-ordination and Regulation of Movements (Pergamon Press, New York, 1967)

    Google Scholar 

  2. J.J. Kutch, F.J. Valero-Cuevas, Muscle redundancy does not imply robustness to muscle dysfunction. J. Biomech. 44(7), 1264–1270 (2011)

    Article  Google Scholar 

  3. M.L. Latash, The bliss (not the problem) of motor abundance (not redundancy). Exp. Brain Res. 217(1), 1–5 (2012)

    Google Scholar 

  4. G.E. Loeb, Overcomplete musculature or underspecified tasks? Mot. Control 4(1), 81–83 (2000)

    Google Scholar 

  5. K.G. Keenan, V.J. Santos, M. Venkadesan, F.J. Valero-Cuevas, Maximal voluntary fingertip force production is not limited by movement speed in combined motion and force tasks. J. Neurosci. 29, 8784–8789 (2009)

    Article  Google Scholar 

  6. F.J. Valero-Cuevas, F.E. Zajac, C.G. Burgar, Large index-fingertip forces are produced by subject-independent patterns of muscle excitation. J. Biomech. 31, 693–703 (1998)

    Article  Google Scholar 

  7. F.J. Valero-Cuevas, H. Hoffmann, M.U. Kurse, J.J. Kutch, E.A. Theodorou, Computational models for neuromuscular function. IEEE Rev. Biomed. Eng. 2, 110–135 (2009)

    Google Scholar 

  8. R. Shadmehr, S. Mussa-Ivaldi, Biological Learning and Control: How the Brain Builds Representations, Predicts Events, and Makes Decisions (MIT Press, Cambridge, 2012)

    Google Scholar 

  9. E. Todorov, M.I. Jordan, Optimal feedback control as a theory of motor coordination. Nat. Neurosci. 5(11), 1226–1235 (2002)

    Article  Google Scholar 

  10. E. Theodorou, E. Todorov, F.J. Valero-Cuevas, Neuromuscular stochastic optimal control of a tendon driven index finger model, in 2011 American Control Conference (ACC) (IEEE, 2011), pp. 348–355

    Google Scholar 

  11. E. Theodorou, F.J. Valero-Cuevas, Optimality in neuromuscular systems, in 2010 IEEE Annual International Conference of the Engineering in Medicine and Biology Society (EMBC) (IEEE, 2010), pp. 4510–4516

    Google Scholar 

  12. V. Kumar, Y. Tassa, T. Erez, E. Todorov, Real-time behaviour synthesis fordynamic hand-manipulation, in 2014 IEEE International Conference on Robotics and Automation (ICRA), (IEEE, 2014), pp. 6808–6815

    Google Scholar 

  13. M. Kalakrishnan, J. Buchli, P. Pastor, M. Mistry, S. Schaal, Learning, planning, and control for quadruped locomotion over challenging terrain. Int. J. Robot. Res. 30(2), 236–258 (2011)

    Google Scholar 

  14. E. Theodorou, J. Buchli, S. Schaal, A generalized path integral control approach to reinforcement learning. J. Mach. Learn. Res. 11, 3137–3181 (2010)

    Google Scholar 

  15. Wikipedia contributors. Basis vectors. Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/wiki/Curse_of_dimensionality. Accessed 7 June 2015

  16. A.D. Kuo, F.E. Zajac, Human standing posture: multi-joint movement strategies based on biomechanical constraints. Prog. Brain Res. 97, 349–358 (1993)

    Article  Google Scholar 

  17. F.J. Cole et al. A History of Comparative Anatomy from Aristotle to the Eighteenth Century (Macmillan Publisher, London, 1944)

    Google Scholar 

  18. A. Vesalius, De Humani Corporis Fabrica Libri Septem (Ex officina I. Oporini, Basileae, 1543)

    Google Scholar 

  19. R. Van Rijn, The Anatomy Lesson of Dr. Nicolaes Tulp (1632)

    Google Scholar 

  20. F.J. Valero-Cuevas, C.F. Small, Load dependence in carpal kinematics during wrist flexion in vivo. Clin. Biomech. 12, 154–159 (1997)

    Article  Google Scholar 

  21. H. van Duinen, S.C. Gandevia, Constraints for control of the human hand. J. Physiol. 589(23), 5583–5593 (2011)

    Article  Google Scholar 

  22. C.E. Wall, A model of temporomandibular joint function in anthropoid primates basedon condylar movements during mastication. Am. J. Phys. Anthropol. 109(1), 67–88 (1999)

    Article  Google Scholar 

  23. F.J. Valero-Cuevas, Predictive modulation of muscle coordination pattern magnitude scales fingertip force magnitude over the voluntary range. J. Neurophysiol. 83(3), 1469–1479 (2000)

    Google Scholar 

  24. F.J. Valero-Cuevas, J.D. Towles, V.R. Hentz, Quantification of fingertip force reduction in the forefinger following simulated paralysis of extensor and intrinsic muscles, J. Biomech. 33, 1601–1609 (2000)

    Google Scholar 

  25. L. Gregoire, H.E. Veeger, P.A. Huijing, S.G.J. van Ingen, Role of mono-and biarticular muscles in explosive movements. Int. J. Sport. Med. 5(6):301–305, (1984)

    Google Scholar 

  26. J.M. Inouye, F.J. Valero-Cuevas, Anthropomorphic tendon-driven robotic hands can exceed human grasping capabilities following optimization. Int. J. Robot. Res. (2013)

    Google Scholar 

  27. F.J. Valero-Cuevas, J.W. Yi, D. Brown, R.V. McNamara, C. Paul, H. Lipson, The tendon network of the fingers performs anatomical computation at a macroscopic scale. IEEE Trans. Biomed. Eng. 54, 1161–1166 (2007)

    Article  Google Scholar 

  28. V.S. Chib, M.A Krutky, K.M. Lynch, F.A. Mussa-Ivaldi, The separate neural control of hand movements and contact forces. J. Neurosci. 29(12), 3939–3947 (2009)

    Google Scholar 

  29. R.M. Murray, Z. Li, S.S. Sastry, A Mathematical Introduction to Robotic Manipulation (CRC Press, Florida, 1994)

    Google Scholar 

  30. V. Squeri, L. Masia, M. Casadio, P. Morasso, E. Vergaro, Force-field compensation in a manual tracking task. PLoS One 5(6), e11189 (2010)

    Google Scholar 

  31. M. Venkadesan, F.J. Valero-Cuevas, Neural control of motion-to-force transitions with the fingertip. J. Neurosci. 28, 1366–1373 (2008)

    Article  Google Scholar 

  32. T. Yoshikawa, Foundations of Robotics: Analysis and Control (MIT Press, Cambridge, 1990)

    Google Scholar 

  33. N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29(8), 681–690 (1984)

    Article  MATH  Google Scholar 

  34. E.R. Kearney, I.W. Hunter, System identification of human joint dynamics. Crit. Rev. Biomed. Eng. 18(1), 55–87 (1989)

    Google Scholar 

  35. J.M. Lanman, Movement and the mechanical properties of the intact human elbow joint. Ph.D. thesis, Massachusetts Institute of Technology (1980)

    Google Scholar 

  36. G.I. Zahalak, S.J. Heyman, A quantitative evaluation of the frequency-response characteristics of active human skeletal muscle in vivo. J. Biomech. Eng. 101(1), 28–37 (1979)

    Google Scholar 

  37. E. Burdet, R. Osu, D.W. Franklin, T.E. Milner, M. Kawato, The central nervous system stabilizes unstable dynamics by learning optimal impedance. Nature 414(6862), 446–449 (2001)

    Article  Google Scholar 

  38. E. Burdet, R. Osu, D.W. Franklin, T. Yoshioka, T.E. Milner, M. Kawato, A method for measuring endpoint stiffness during multi-joint arm movements. J. Biomech. 33(12), 1705–1709 (2000)

    Article  Google Scholar 

  39. M. Darainy, N. Malfait, P.L. Gribble, F. Towhidkhah, D.J. Ostry, Learning to control arm stiffness under static conditions. J. Neurophysiol. 92(6), 3344 (2004)

    Article  Google Scholar 

  40. T. Flash, F. Mussa-Ivaldi, Human arm stiffness characteristics during the maintenance of posture. Exp. Brain Res. 82(2), 315–326 (1990)

    Article  Google Scholar 

  41. D.W. Franklin, G. Liaw, T.E. Milner, R. Osu, E. Burdet, M. Kawato, Endpoint stiffness of the arm is directionally tuned to instability in the environment. J. Neurosci. 27(29), 7705–7716 (2007)

    Article  Google Scholar 

  42. D.W. Franklin, U. So, M. Kawato, T.E. Milner, Impedance control balances stability with metabolically costly muscle activation. J. Neurophysiol. 92(5), 3097 (2004)

    Article  Google Scholar 

  43. H. Gomi, R. Osu, Task-dependent viscoelasticity of human multijoint arm and its spatial characteristics for interaction with environments. J. Neurosci. 18(21), 8965–8978 (1998)

    Google Scholar 

  44. N. Hogan, Impedance control: an approach to manipulation, in American Control Conference (IEEE, 1984), pp. 304–313

    Google Scholar 

  45. N. Hogan, The mechanics of multi-joint posture and movement control. Biol. Cybern. 52(5), 315–331 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  46. X. Hu, W.M. Murray, E.J. Perreault, Muscle short-range stiffness can be used to estimate the endpoint stiffness of the human arm. J. Neurophysiol. 105(4), 1633–1641 (2011)

    Article  Google Scholar 

  47. H.U. Xiao, W.M. Murray, E.J. Perreault, Biomechanical constraints on the feedforward regulation of endpoint stiffness. J. Neurophysiol. 108(8), 2083–2091 (2012)

    Google Scholar 

  48. A. Kadiallah, G. Liaw, M. Kawato, D.W. Franklin, E. Burdet. Impedance control is selectively tuned to multiple directions of movement. J. Neurophysiol

    Google Scholar 

  49. J. McIntyre, F.A. Mussa-Ivaldi, E. Bizzi, The control of stable postures in the multijoint arm. Exp. Brain Res. 110(2), 248–264 (1996)

    Article  Google Scholar 

  50. T.E. Milner, Contribution of geometry and joint stiffness to mechanical stability of the human arm. Exp. Brain Res. 143(4), 515–519 (2002)

    Article  Google Scholar 

  51. F.A. Mussa-Ivaldi, N. Hogan, E. Bizzi, Neural, mechanical, and geometric factors subserving arm posture in humans. J. Neurosci. 5(10), 2732 (1985)

    Google Scholar 

  52. R. Osu, H. Gomi, Multijoint muscle regulation mechanisms examined by measured human arm stiffness and EMG signals. J. Neurophysiol. 81(4), 1458 (1999)

    Google Scholar 

  53. E.J. Perreault, R.F. Kirsch, P.E. Crago, Effects of voluntary force generation on the elastic components of endpoint stiffness. Exp. Brain Res. (Experimentelle Hirnforschung Experimentation cerebrale) 141(3), 312, (2001)

    Google Scholar 

  54. E.J. Perreault, R.F. Kirsch, P.E. Crago, Voluntary control of static endpoint stiffness during force regulation tasks. J. Neurophysiol. 87(6), 2808 (2002)

    Google Scholar 

  55. D. Shin, J. Kim, Y. Koike, A myokinetic arm model for estimating joint torque and stiffness from EMG signals during maintained posture. J. Neurophysiol. 101(1), 387–401 (2009)

    Article  Google Scholar 

  56. S. Stroeve, Impedance characteristics of a neuromusculoskeletal model of the human arm i. Posture control. Biol. Cybern. 81(5), 475–494 (1999)

    Article  MATH  Google Scholar 

  57. K.P. Tee, D.W. Franklin, M. Kawato, T.E. Milner, E. Burdet, Concurrent adaptation of force and impedance in the redundant muscle system. Biol. Cybern. 102(1), 31–44 (2010)

    Google Scholar 

  58. J.M. Inouye, F.J. Valero-Cuevas, A novel computational approach helps explain and reconcile conflicting experimental findings on the neural control of arm endpoint stiffness, in 2012 22nd Annual Society for the Neural Control of Movement Conference (Venice, Italy, 2012)

    Google Scholar 

  59. C. Tomberg, M.D. Caramia, Prime mover muscle in finger lift or finger flexion reaction times: identification with transcranial magnetic stimulation. Electroencephalogr. Clin. Neurophysiol. Evoked Potentials Sect. 81(4), 319–322 (1991)

    Google Scholar 

  60. T.E. Milner, Adaptation to destabilizing dynamics by means of muscle cocontraction. Exp. Brain Res. 143(4), 406–416 (2002)

    Google Scholar 

  61. F.J. Valero-Cuevas, An integrative approach to the biomechanical function and neuromuscular control of the fingers. J. Biomech. 38, 673–684 (2005)

    Article  Google Scholar 

  62. R. Balasubramanian, Y. Matsuoka, Biological stiffness control strategies for the anatomically correct testbed (act) hand, in 2008 IEEE International Conference on Robotics and Automation (ICRA) (IEEE, 2008), pp. 737–742

    Google Scholar 

  63. J.J. Kutch, F.J. Valero-Cuevas, Challenges and new approaches to proving the existence of muscle synergies of neural origin. PLoS Comput. Biol. 8(5), e1002434 (2012)

    Article  Google Scholar 

  64. M.K. Steele, M.C. Tresch, E.J. Perreault, Consequences of biomechanically constrained tasks in the design and interpretation of synergy analyses. J. Neurophysiol. 113(7), 2102–2113 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Valero-Cuevas .

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag London

About this chapter

Cite this chapter

Valero-Cuevas, F.J. (2016). Implications. In: Fundamentals of Neuromechanics. Biosystems & Biorobotics, vol 8. Springer, London. https://doi.org/10.1007/978-1-4471-6747-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4471-6747-1_10

  • Published:

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-4471-6746-4

  • Online ISBN: 978-1-4471-6747-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics